Agriculture, Trade, and the Spatial Efficiency of Global Water Use

Tamma Carleton (UCSB & NBER) Levi Crews (Princeton) Ishan Nath (Federal Reserve Bank of San Francisco)

March 2024

Any views expressed in this paper do not necessarily represent those of the Federal Reserve System or its Staff.

In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

• California almond production has **doubled** in the last 20 years

In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

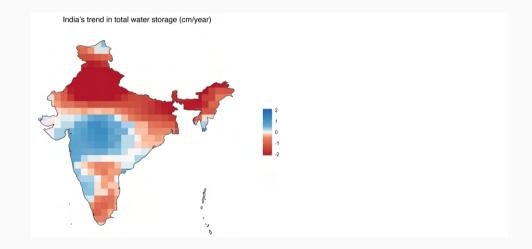
- California almond production has **doubled** in the last 20 years
- California almonds \approx 80% of world production \rightarrow 70% exported abroad

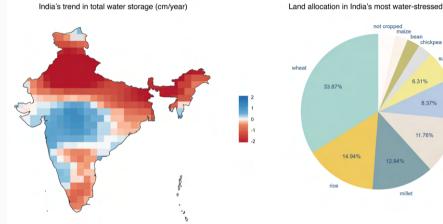
In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

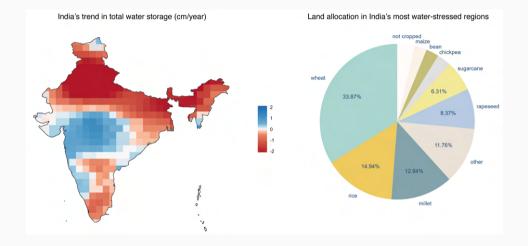
- California almond production has **doubled** in the last 20 years
- California almonds \approx 80% of world production \rightarrow 70% exported abroad
- Expansion coincides with **drought** and **land subsidence** due to groundwater extraction


In The Midst Of Drought, California Farmers Used More Water For Almonds

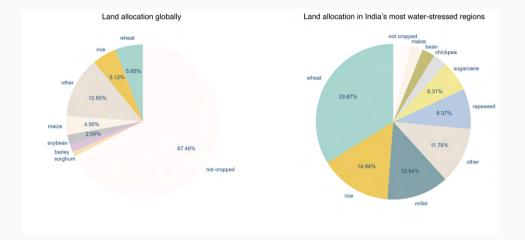

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

- California almond production has **doubled** in the last 20 years
- California almonds \approx 80% of world production \rightarrow 70% exported abroad
- Expansion coincides with **drought** and **land subsidence** due to groundwater extraction
- $\sim \! 12$ liters of water used to grow <u>one</u> almond



Land allocation in India's most water-stressed regions


sugarcane

rapeseed

other

India is the world's leading exporter of rice

Crop trade depletes global groundwater

Published online 6 April 2017

The import and export of crops drawing on groundwater is threatening food and water security in the Middle East and elsewhere.

Nadia El-Awady

ENVIRONMENTAL RESEARCH LETTERS

LETTER • OPEN ACCESS

Global unsustainable virtual water flows in agricultural trade Lorenzo Rosa¹ ^(D), Davide Danilo Chiarelli² ^(C), Chengyi Tu¹³, Maria Cristina Rulli² ^(D) and Paolo D'Odorico¹ ^(C) Published 22 October 2019 • © 2019 The Author(s). Pu ErrTFFR "The globalization of water through trade contributes to running rivers dry, an environmental externality commonly overlooked by trade policies" --Rosa et al. (2019)

NASA-University Study Finds

11 Percent of Disappearing

Groundwater Used to Grow

Internationally Traded Food

doi:10.1038/nature21403

700 | NATURE | VOL 543 | 30 MARCH 2017

Groundwater depletion embedded in international food trade

Carole Dalin¹, Yoshihide Wada^{2,3,4,5}, Thomas Kastner^{6,7} & Michael J. Puma^{3,4,8}

Key Ideas:

- 1. Water is effectively non-tradable, but it is embedded in agricultural trade
- 2. Ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run water availability
- 3. Water as ag. input is **distorted** \rightarrow trade can have **ambiguous** welfare effects

Key Ideas:

- 1. Water is effectively non-tradable, but it is embedded in agricultural trade
- 2. Ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run water availability
- 3. Water as ag. input is **distorted** \rightarrow trade can have **ambiguous** welfare effects

With these in mind, we ask:

How do global ag. trade patterns & policies affect long-run water availability and welfare?

• Compile globally comprehensive geospatial dataset on water and agriculture

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - Input market property right failures and agricultural market interventions are ubiquitous
 - Water-intensive crops concentrate *highly* in water-abundant locations, *but also* in a few locations losing water rapidly

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - Input market property right failures and agricultural market interventions are ubiquitous
 - Water-intensive crops concentrate *highly* in water-abundant locations, *but also* in a few locations losing water rapidly
- Calibrate a quantitative dynamic spatial equilibrium model for the world
 - Model captures aquifer drawdown and recharge, crop production and consumption, agricultural trade and policy

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - Input market property right failures and agricultural market interventions are ubiquitous
 - Water-intensive crops concentrate *highly* in water-abundant locations, *but also* in a few locations losing water rapidly
- Calibrate a quantitative dynamic spatial equilibrium model for the world
 - Model captures aquifer drawdown and recharge, crop production and consumption, agricultural trade and policy
- Use model simulations to characterize trade and welfare outcomes

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - Input market property right failures and agricultural market interventions are ubiquitous
 - Water-intensive crops concentrate *highly* in water-abundant locations, *but also* in a few locations losing water rapidly
- Calibrate a quantitative dynamic spatial equilibrium model for the world
 - Model captures aquifer drawdown and recharge, crop production and consumption, agricultural trade and policy
- Use model simulations to characterize trade and welfare outcomes
 - How does global ag. trade affect long-run water availability and welfare?

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - Input market property right failures and agricultural market interventions are ubiquitous
 - Water-intensive crops concentrate *highly* in water-abundant locations, *but also* in a few locations losing water rapidly
- Calibrate a quantitative dynamic spatial equilibrium model for the world
 - Model captures aquifer drawdown and recharge, crop production and consumption, agricultural trade and policy
- Use model simulations to characterize trade and welfare outcomes
 - How does global ag. trade affect long-run water availability and welfare?
 - Do specific ag./trade policies *exacerbate* or *mitigate* regional water depletion?

1. Global ag. trade dramatically reduces global land and water use

 $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run

1. Global ag. trade dramatically reduces global land and water use

 $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run

2. Water-scarce regions benefit the most from trade

 $\rightarrow\,$ import water-intensive goods, avoiding severe water depletion

1. Global ag. trade dramatically reduces global land and water use

 $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run

2. Water-scarce regions benefit the most from trade

- ightarrow import water-intensive goods, avoiding severe water depletion
- 3. Liberalizing trade can be harmful in specific contexts and regions:
 - California and India avoid extreme depletion under autarky
 - historic Uruguay Round of trade liberalization *increased* water depletion and lowered welfare

Related literature

- Copeland, Shapiro, and Taylor (2022) review literature on globalization and the environment, but **little work on natural resources** [*lately:* Farrokhi et al. (2023)]
- Anderson, Rausser, and Swinnen (2013) review literature on ag. policy distortions, but **no investigation of environmental effects** [*exception:* Berrittella et al. (2008) using GTAP]
- Reduced-form empirics and PE analysis:
 - water markets: Bruno and Jessoe (2021), Ayres, Meng, and Plantinga (2021), Rafey (2023)
 - water + ag./trade policy: Debaere (2014), Carleton (2021), Sekhri (2022)
- Simple two-country/SOE models: Chichilnisky (1994) and Brander and Taylor (1997)
 - lack of property rights can give comparative advantage in extractive good
 - opening to trade \rightarrow potentially long-run welfare losses
- Closest quantitative trade model: Costinot, Donaldson, and Smith (2016) on effect of climate change on agricultural comparative advantage, but **no dynamics** and **no water**

Data

A global picture of water...

Water table depth: Fan, Li, and Miguez-Macho (2013)

- Global snapshot at 30 arc-second (\sim 1km) resolution
- How: Hydrological model interpolates over measurements from >1.6 million well sites

Evolution of total water storage: GRACE

- Equal-area grid (${\approx}1^{\circ}{\times}1^{\circ}$ at the equator) observed monthly over 2003–2016
- *How*: Variations in earth's gravity field—dominated by shifting water mass—change distance between two tandem satellites (Tapley et al., 2004)

Other global hydrological spatial data:

- Precipitation: **GMFD v.3**
- Aridity: Trabucco and Zomer (2019)
- Surface water occurrence: Pekel et al. (2016)
- Soil type: Hengl et al. (2017)
- Specific yield by soil type: Loheide, Butler, and Gorelick (2005)
- Water intensity by crop: Mekonnen and Hoekstra (2011)

... and agriculture

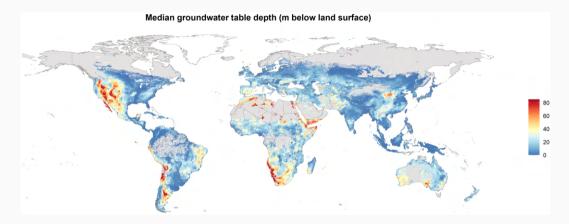
Potential agricultural yields: GAEZ

- Crop-specific potential yields at 5 arc-minute resolution (~2.2 million grid cells on land)
- *How*: Agronomic model combining detailed land & crop characteristics with different input mix and climate scenarios, taking time series average over 1961–90

Agricultural land use: SAGE

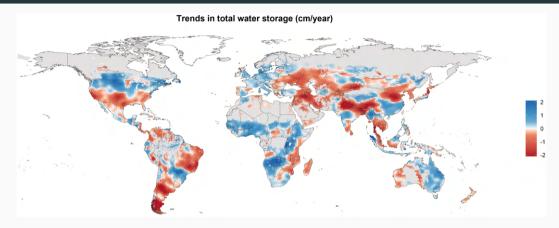
- Cropped area fraction for 175 crops (& pasture) at \sim 10km \times 10km resolution c. 2000
- How: Combine census data with remotely-sensed maps of land cover (Monfreda et al., 2008)

Agricultural production & trade: FAOSTAT

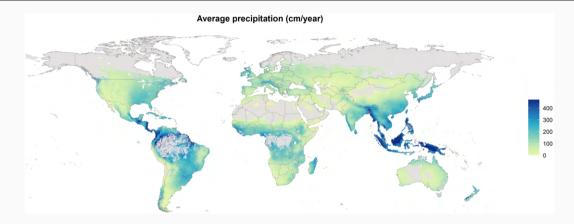

- Crop-specific quantities and farm-gate prices (USD/ton) for >200 countries back to 1961
- Bilateral trade flows in USD by crop, but we use Comtrade for better coverage

Distortions to agricultural incentives: World Bank

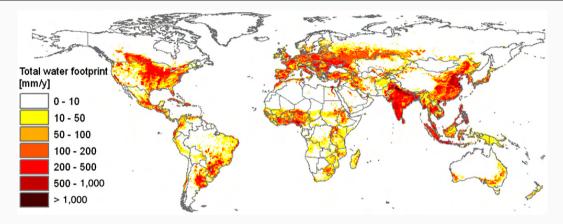
- Nominal Rates of Assistance (NRA) for >90% of world pop. & ag. GDP
- Includes: taxes and subsidies to producers, import tariffs, export subsidies, input subsidies/taxes, foreign exchange mkt. interventions (*but not water*!)


Facts

Fact 1: Vast spatial heterogeneity in water resources


- Source: Fan, Li, and Miguez-Macho (2013)
- Resolution: 30 arc-seconds (\sim 1km) observed as cross-section c. 2000
- How: Hydrological model interpolates over measurements from >1.6 million well sites

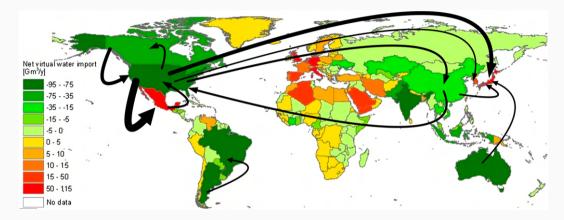
Fact 1: Vast spatial heterogeneity in water resources


- Source: **GRACE**
- Resolution: Equal-area grid (${\sim}1^{\circ}{\times}1^{\circ}$ at the equator) observed monthly over 2003–2016
- *How*: Variations in earth's gravity field—dominated by shifting water mass—change distance between two tandem satellites (Tapley et al., 2004)

Fact 1: Vast spatial heterogeneity in water resources

- Source: Global Meteorological Forcing Dataset (GMFD) v.3
- Resolution: 0.25° (${\sim}28$ km) observed daily over 1948–2010
- How: Observational data \rightarrow weather model \rightarrow downscaled (Sheffield, Goteti, and Wood, 2006)

Fact 2: Agriculture dominates global water consumption



Agricultural production accounts for...

 \sim **70%** of global water withdrawals (Dubois et al., 2011), but

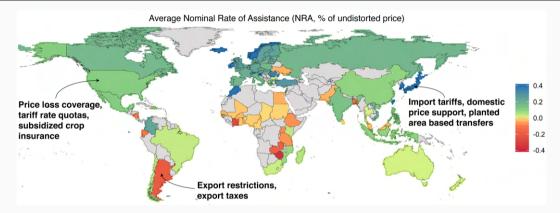
 \sim 90% of global water *consumption* (Hoekstra and Mekonnen, 2012; d'Odorico et al., 2019)

Fact 2: Agriculture dominates global water consumption

Agricultural trade embeds...

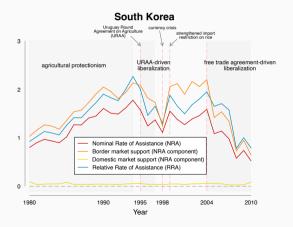
20–25% of global water consumption (Hoekstra and Mekonnen, 2012; Carr et al., 2013)
11% of global *ground* water depletion (Dalin et al., 2017)

Fact 3: Local markets for water rarely exist

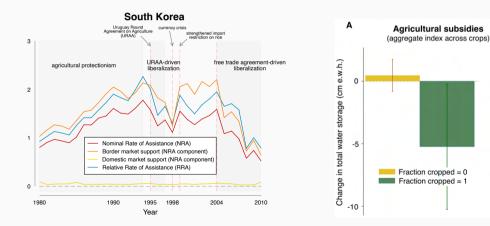


Fact 3: Local markets for water rarely exist

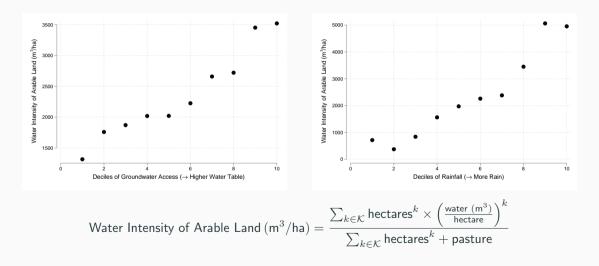
- >93% of global agricultural production occurs in regions with no formal water markets
- >50% of countries with "water-scarce" basins lack any regulatory control (Richter, 2016)


Fact 4: Agricultural policy plays a critical role in driving water use

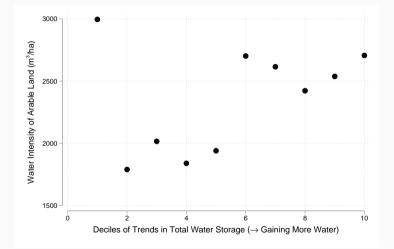
- Nominal Rate of Assistance (NRA) = pct. wedge of domestic over international price
- NRAs for 80 farm products in 82 countries (>90% of world pop. & ag. GDP)
- distortions: direct taxes and subsidies to producers, import tariffs, export subsidies, input subsidies or taxes, foreign exchange market interventions (*don't include water!*)

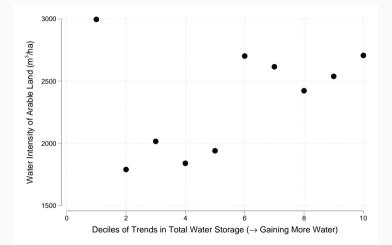

Fact 4: Agricultural policy plays a critical role in driving water use

Direct evidence from Carleton (2021): increasing net agricultural subsidies causes extremely large declines in total water volumes

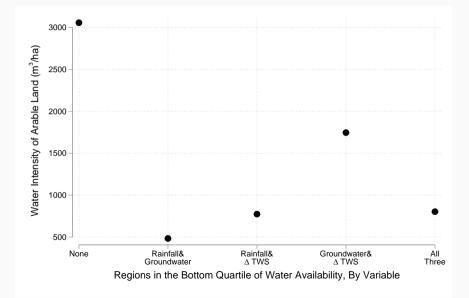


Fact 4: Agricultural policy plays a critical role in driving water use


Direct evidence from Carleton (2021): increasing net agricultural subsidies causes extremely large declines in total water volumes


Fact 5: Water-intensive crops locate primarily in water-abundant regions...

Fact 5: ... but also in some regions losing water rapidly



Fact 5: ... but also in some regions losing water rapidly

Aside: Regions losing water fastest are already water-scarce, are highly populated, and have low agronomic potential (see our $AEA \ P\&P$) \bigcirc

Fact 5: ... but also in some regions losing water rapidly

1. Vast spatial heterogeneity in water resources \rightarrow comparative advantage + dynamics

- 1. Vast spatial heterogeneity in water resources \rightarrow comparative advantage + dynamics
- 2. Agriculture dominates global water consumption \rightarrow focus on agriculture & trade

- 1. Vast spatial heterogeneity in water resources \rightarrow comparative advantage + dynamics
- 2. Agriculture dominates global water consumption \rightarrow focus on agriculture & trade
- 3. Local markets for water rarely exist \rightarrow spatial & temporal externalities

- 1. Vast spatial heterogeneity in water resources \rightarrow comparative advantage + dynamics
- 2. Agriculture dominates global water consumption \rightarrow focus on agriculture & trade
- 3. Local markets for water rarely exist \rightarrow spatial & temporal externalities
- 4. Agricultural policy greatly affects water use \rightarrow maybe it hurts, but maybe it can help

- 1. Vast spatial heterogeneity in water resources \rightarrow comparative advantage + dynamics
- 2. Agriculture dominates global water consumption \rightarrow focus on agriculture & trade
- 3. Local markets for water rarely exist \rightarrow spatial & temporal externalities
- 4. Agricultural policy greatly affects water use ightarrow maybe it hurts, but maybe it can help
- 5. Water-intensive crops primarily locate in water-abundant regions, but also in some water-losing regions \rightarrow gains from trade, but possible exceptions in some regions

Model

• Time and space: discrete time t, geography split into

Country, Field $_f$ — Parcels $_{\omega \in [0,h^f]}$ Aquifer_a

- Two sectors: homog. outside good + crops k distinguished by exporter j, all traded
- Atomistic laborers: earn wage w_i in outside sector OR farm chosen k on assigned parcel ω
- Water: drawn from q to farm $f \in \mathcal{F}_q$, w/ each q an open access renewable resource

For each country *i*, the representative consumer lives **hand-to-mouth** with **quasilinear** utility over the outside good and a **nested CES** bundle of exporter-specific crop varieties:

$$U_{it} = C_{it}^{o} + \zeta_{i} \ln C_{it} \quad \text{with} \quad C_{it} = \left[\sum_{k \in \mathcal{K}} \left(\zeta_{i}^{k}\right)^{1/\kappa} \left(C_{it}^{k}\right)^{\frac{\kappa-1}{\kappa}}\right]^{\frac{\kappa}{\kappa-1}}$$
$$C_{it}^{k} = \left[\sum_{j \in \mathcal{I}} \left(\zeta_{ji}^{k}\right)^{1/\sigma} \left(C_{jit}^{k}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

Technology I: Agriculture

Consider the farmer of parcel ω on field $f \in \mathcal{F}_{iq}$, who combines ...

- $H_t^{fk}(\omega)$ units of labor (endowment = 1)
- $L_t^{fk}(\omega)$ units of land (endowment = 1)
- $G_t^{fk}(\omega)$ units of groundwater

to produce

$$Q_t^{fk}(\omega) = A^{fk}(\omega) \left[H_t^{fk}(\omega) \right]^{\alpha} \left[\min\left\{ L_t^{fk}(\omega), \frac{G_t^{fk}(\omega)}{\phi^k} \right\} \right]^{1-\alpha},$$

of crop k, where

- ϕ^k is water intensity of crop k
- $A^{fk}(\omega)$ is idiosyncratic crop-specific TFP drawn i.i.d from Fréchet:

$$\mathbb{P}\left\{A^{fk}(\omega) \le a\right\} = \exp\left\{-\gamma \left(\frac{a}{A^{fk}}\right)^{-\theta}\right\} \quad \text{with} \quad \mathbb{E}[A^{fk}(\omega)] = A^{fk}$$

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

Technology II: Water extraction

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

[in the background: $\Upsilon_q = \texttt{fcn}(\texttt{rainfall}_q, \texttt{surface water}_q, \texttt{pumping tech}_q, \ldots)$]

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

[in the background: $\Upsilon_q = \texttt{fcn}(\texttt{rainfall}_q, \texttt{surface water}_q, \texttt{pumping tech}_q, \ldots)$]

• Implications for crop output: Can show that

$$\max_{H} Q_t^{fk}(\omega) = A^{fk}(\omega) M(\phi^k, D_{qt})$$

where $M(\phi^k, D_q)$ is continuous and decreasing in both ϕ^k and D_q .

- Produced under constant returns to scale using labor only
- Idiosyncratic productivity in outside sector A^o_i(ω) of laborer assigned to ω is drawn i.i.d. from Fréchet with same shape parameter θ:

$$\mathbb{P}\left\{A_i^o(\omega) \le a^o\right\} = \exp\left\{-\gamma \left(\frac{a^o}{A_i^o}\right)^{-\theta}\right\}, \quad \text{with} \quad \mathbb{E}[A_i^o(\omega)] = A_i^o(\omega)$$

- Produced under constant returns to scale using labor only
- Idiosyncratic productivity in outside sector $A_i^o(\omega)$ of laborer assigned to ω is drawn i.i.d. from Fréchet with same shape parameter θ :

$$\mathbb{P}\left\{A_i^o(\omega) \le a^o\right\} = \exp\left\{-\gamma \left(\frac{a^o}{A_i^o}\right)^{-\theta}\right\}, \quad \text{with} \quad \mathbb{E}[A_i^o(\omega)] = A_i^o(\omega)$$

• Implication: Laborer's choice between sectors and crops becomes one discrete choice problem that can be solved in closed form

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...
- Groundwater evolution: The depth D_{qt} follows the law of motion

$$D_{qt+1} = D_{qt} + \rho_q [(1 - \psi)X_{qt} - R_q], \qquad \psi \in (0, 1)$$

where

- X_{qt} is the **total extracted** from aquifer q in period t
- R_q is the **natural recharge** of aquifer q
- ρ_q is the specific yield of aquifer q (volume \rightarrow depth)
- ψ is the rate of ${\bf return}$ flow ${\rm per}$ unit extracted

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...
- Groundwater evolution: The depth D_{qt} follows the law of motion

$$D_{qt+1} = D_{qt} + \rho_q [(1 - \psi)X_{qt} - R_q], \qquad \psi \in (0, 1)$$

where

- X_{qt} is the **total extracted** from aquifer q in period t
- R_q is the **natural recharge** of aquifer q
- ρ_q is the specific yield of aquifer q (volume \rightarrow depth)
- + ψ is the rate of ${\bf return}$ flow per unit extracted

No dynamic choices, but the evolution of depths matters!

Utility maximization by the representative household in each country requires that

$$C_{jit}^{k} = \zeta_{i} \frac{\zeta_{i}^{k} \left(P_{it}^{k}\right)^{1-\kappa}}{\sum_{\ell \in \mathcal{K}} \zeta_{i}^{\ell} \left(P_{it}^{\ell}\right)^{1-\kappa}} \frac{\zeta_{ji}^{k} \left(\delta_{ji}^{k} p_{jt}^{k}\right)^{-\sigma}}{\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}} \quad \text{for all } i, j \in \mathcal{I}, \ k \in \mathcal{K},$$

where

$$P_{it}^{k} = \left[\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

denotes the CES price index associated with crop k in country i at time t.

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

7

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

• Total production: adding across fields & incorporating selection

$$Q_{it}^k = \sum_{f \in \mathcal{F}_i} h^f A^{fk} M(\phi^k, D_{qt}) \left(\pi_t^{fk}\right)^{\frac{\theta - 1}{\theta}}$$

Equilibrium III: Definition of competitive equilibrium

Given NRAs, $\{\tau_{it}^k\}$, and initial groundwater depths, $\{D_{q0}\}$, a competitive equilibrium is a **path** of consumption, $\{C_{jit}^k\}$, output, $\{Q_{it}^k\}$, prices, $\{p_{it}^k\}$, shares, $\{\pi_t^{fk}\}$, groundwater depths, $\{D_{qt}\}$, and groundwater extractions, $\{X_{qt}\}$, such that

- representative consumers maximize their utility;
- laborers select activities to maximize their returns;
- markets clear:

$$Q_{it}^{k} = \sum_{j \in \mathcal{I}} \delta_{ij}^{k} C_{ijt}^{k} \qquad \forall i, k, t$$
$$X_{qt} = \sum_{f \in \mathcal{F}_{q}} \sum_{k \in \mathcal{K}} h^{f} \pi_{t}^{fk} x^{fk} \qquad \forall q, t;$$

• depths obey their law of motion.

Steady state: $\{\bar{C}_{ji}^k, \bar{Q}_i^k, \bar{p}_i^k, \bar{\pi}^{fk}, \bar{D}_q, \bar{X}_q\}$ with $(1 - \psi)\bar{X}_q = R_q$

Quantification

- Want to match global trends in water resources out-of-steady state
- Proceed in four steps:
 - 1. select broad sample of countries and crops
 - 2. calibrate some technological and hydrological parameters
 - 3. estimate demand side following Costinot, Donaldson, and Smith (2016)
 - 4. estimate (remaining) supply side via nonlinear least squares

Sample selection: Countries

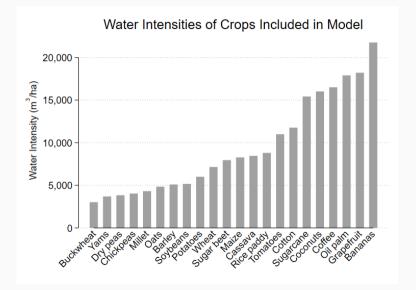
Include countries in the top 40 globally in any of...

(1) number of agricultural workers, (2) agricultural production, or (3) total population

Sample selection: Countries

Resulting sample has **52 countries** that cover...

99% of ag. workers, 97% of ag. production value, 97% of population, and 94% of GDP

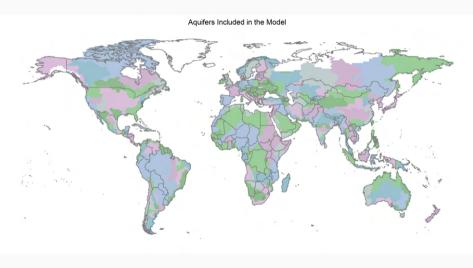


Include high-value and staples (global and regional) + span water intensities | in GAEZ (38)

Resulting sample has 22 crops covering 56% of global value and 59% of global water use

- high-value + global staples: wheat, rice, maize, soybeans, sugarcane, cotton, potatoes, tomatoes, oil palm, bananas (Costinot, Donaldson, and Smith, 2016)
- regional staples: cassava, sorghum, millet, barley, sugar beets
- high water-intensity crops: coffee, grapefruit, coconuts
- low water-intensity crops: yams, buckwheat, chickpeas, dry peas

Sample selection: Crops



Sample selection: Aquifers

Include 37 aquifers (WHYMAP), then cluster GRACE grid cells s.t. 180 water basins (NASA)

Sample selection: Aquifers

Partition land area into 278 "aquifers," of which 205 intersect chosen countries

- Field-level (f): from GAEZ and SAGE at 5-arc minute level (\sim 1.9mil grid cells)
 - crop-specific potential yields A^{fk}
 - crop-specific cropped area fractions π^{fk}
 - $\bullet \ \, {\rm area} \ \, h^f$
- Country-level (i): from FAOSTAT and World Bank
 - crop-specific output Q_{it}^k
 - crop-specific NRA τ^k_{it} and prices p^k_{it}
 - total cultivated land L_{it}
- Bilateral country-level (*ij*): from UN Comtrade
 - bilateral trade flows $E^k_{ijt} \equiv p^k_{it} \delta^k_{ij} C^k_{ijt}$
- Aquifer-level (q): from GRACE and Fan, Li, and Miguez-Macho (2013)
 - initial depths $D_{q,0}$
 - change in total water storage $\propto \Delta D_{q,t}$

Parameters to be calibrated/estimated

σ , κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A^o_i\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$

 \Box v elasticity of extraction productivity

Parameter		Value	Source
labor share	α	0.75	Boppart et al. (2019)
return flow rate	ψ	0.25	Dewandel et al. (2008)
extraction elasticity	v	1.0	Burlig, Preonas, and Woerman (2021)
water intensity	$\{\phi^k\}$		convert from Mekonnen and Hoekstra (2011)
specific yield	$\{\rho_q\}$		s.y. by soil type (Loheide, Butler, and Gorelick, 2005)
			soil type (Hengl et al., 2017)
natural recharge	$\{R_q\}$		residual of avg. ΔTWS from NASA's GRACE data
			& implied water use based on $\{\phi^k\}$ and obs. $\{\pi^{fk}\}$
			from SAGE (Monfreda, Ramankutty, and Foley, 2008)

Parameters to be calibrated/estimated

σ, κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter
$\{A_i^o\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
v	elasticity of extraction productivity

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

Absorb all extra variation in taste imes trade cost parameters \implies exactly match demand side

Parameters to be calibrated/estimated

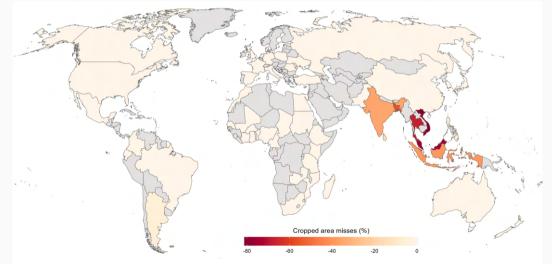
	σ, κ	demand elasticities
	$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
	$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
	α	labor share in crop production
	$\{\phi^k\}$	crop-specific water intensity
	θ	technological heterogeneity (Fréchet shape parameter)
	$\{A_i^o\}$	mean labor productivity in outside sector
\checkmark	ψ	return flow rate
	$\{\rho_q\}$	specific yield
	$\{R_q\}$	natural recharge
	$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
\checkmark	υ	elasticity of extraction productivity

Estimate θ , $\{A_i^o\}$, and $\{\Upsilon_q\}$ jointly via **nonlinear least squares** (NLS):

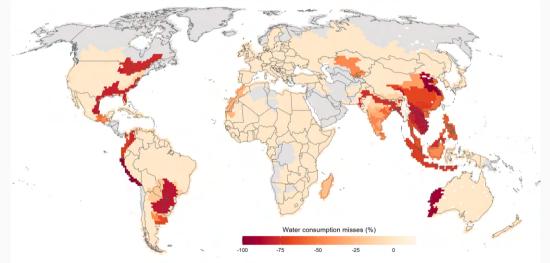
$$\min_{\theta, \{A_i^o\}, \{\Upsilon_q\}} \sum_i \sum_k \left[\ln Q_i^k(\theta, \{A_i^o\}, \{\Upsilon_q\}) - \ln Q_i^k \right]^2 \text{ s.t. } X_q = X_q(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall q$$
$$L_i = L_i(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall i$$

where *observed* extraction is

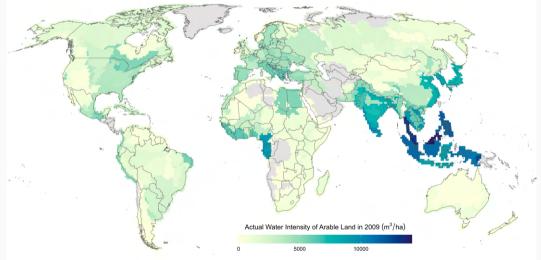
$$X_q \coloneqq \sum_{f \in \mathcal{F}_q} \sum_{k \in \mathcal{K}} h^f \pi^{fk} \phi^k$$

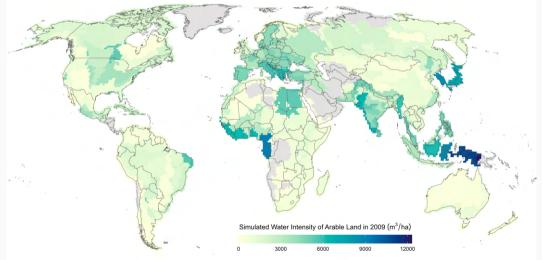

Intuition for identification

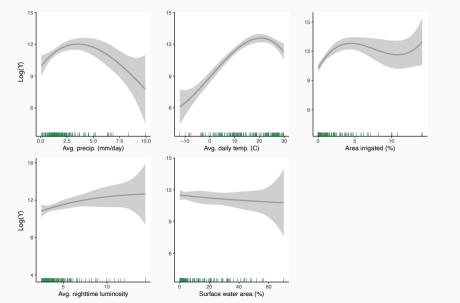
- Share of non-cultivated land \leftrightarrow non-agricultural labor productivity
- $\bullet~$ Water extracted $\leftrightarrow~$ labor productivity of extraction
- $\bullet\,$ Cross-parcel dispersion in productivity $\leftrightarrow\,$ cross-crop dispersion in output


Parameters to be calibrated/estimated

σ, κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A^o_i\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
v	elasticity of extraction productivity


Model fit: Cropped area


Model fit: Agricultural water extraction

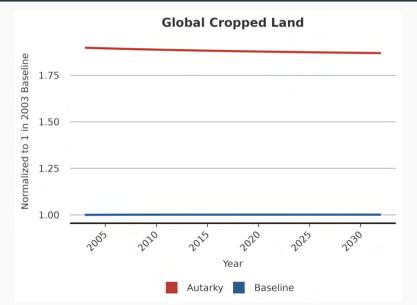

Model fit: Agricultural water extraction (target)

Model fit: Agricultural water extraction (simulated)

Model validation: Water extraction productivity

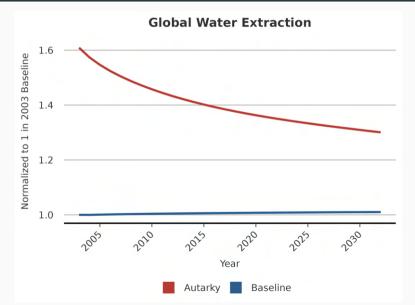
These factors explain 56% of the variation in Υ across aquifers

Counterfactuals

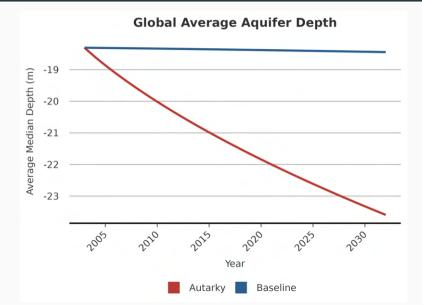

- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$
 - Does existing trade in agriculture improve or worsen the allocation?

- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$
 - Does existing trade in agriculture improve or worsen the allocation?
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009
 - What are the impacts of a major historic global ag. market liberalization?

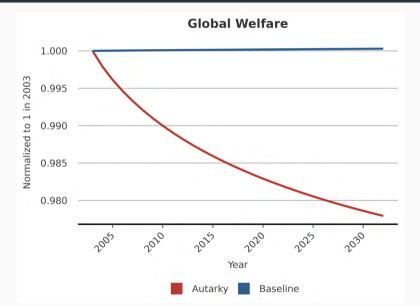
- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$
 - Does existing trade in agriculture improve or worsen the allocation?
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009
 - What are the impacts of a major historic global ag. market liberalization?
- 3. Eliminate all output market distortions—set $\tau_i^k = 1$ for all i, k
 - Do all observed agricultural market interventions exacerbate input market failures?


- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$
 - Does existing trade in agriculture improve or worsen the allocation?
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009
 - What are the impacts of a major historic global ag. market liberalization?
- 3. Eliminate all output market distortions—set $\tau_i^k = 1$ for all i, k
 - Do all observed agricultural market interventions exacerbate input market failures?
- 4. Unilateral country policy changes—e.g. rice export ban in India, EU import restrictions from certain countries, etc.

Global cropped area more than doubles in autarky

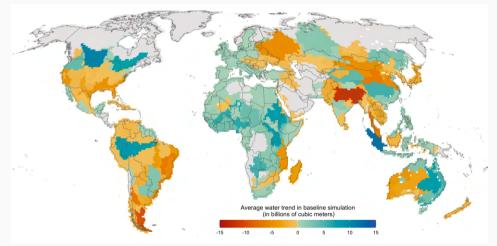

42 / 57

Total global water use much higher in autarky

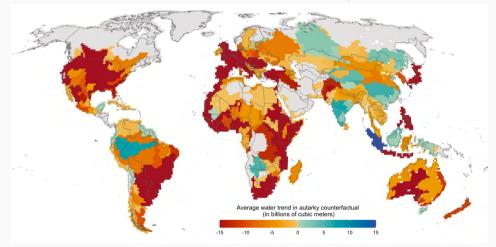


42 / 57

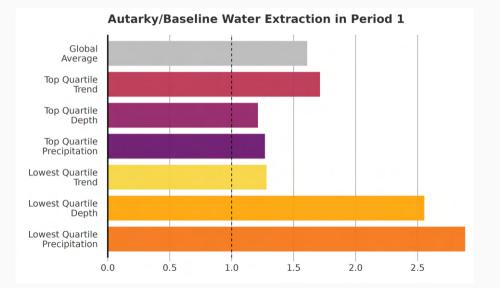
Allowing trade prevents global aquifer depletion


Welfare declines over time in autarky as aquifers deplete

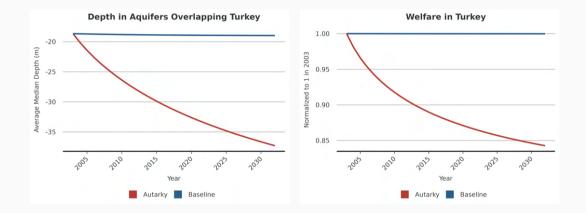
43 / 57


Allowing trade prevents extreme regional depletion

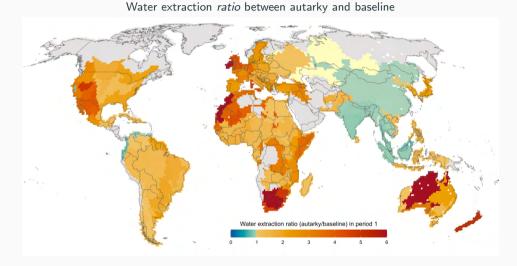
Trends in local water resources - baseline



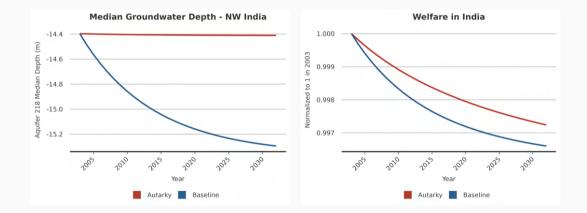
Allowing trade prevents extreme regional depletion


Trends in local water resources - autarky

... by lowering water use in water-stressed regions



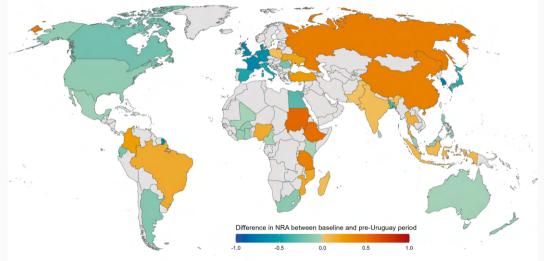
Autarky causes severe water depletion for some food importers



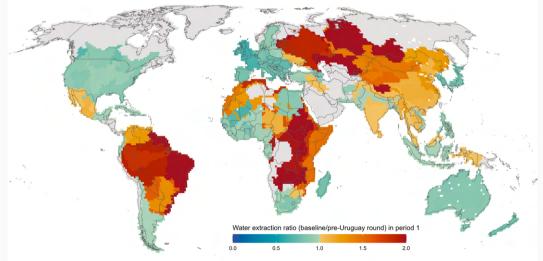
 \longrightarrow Cropped area increases ${>}250\%$ in autarky in Turkey

But, autarky prevents severe depletion for some food exporters

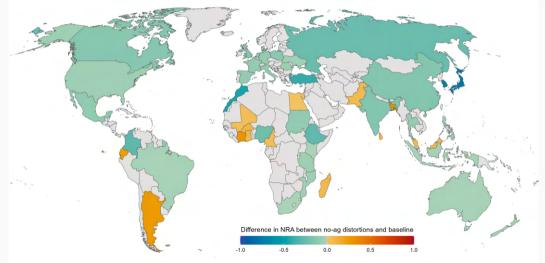
But, autarky prevents severe depletion for some food exporters

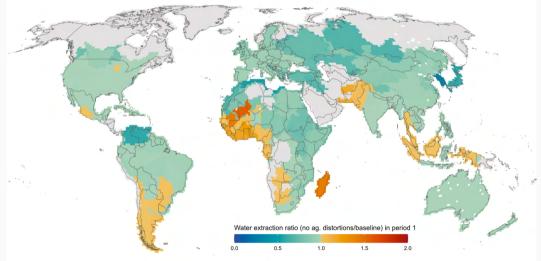


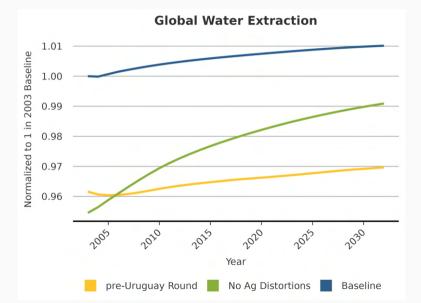
 \longrightarrow Autarky prevents continued water depletion in the region currently losing water fastest

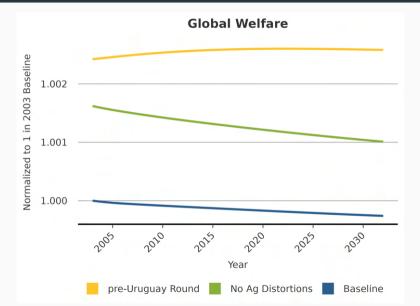

2. 1994 Uruguay Round of WTO Negotiations: Largest global ag. liberalization

- Prior trade agreements (GATT) largely excluded agriculture
- "Tariffication" of non-tariff barriers to agricultural trade with maximum tariff rates imposed
- Implementation: set $\tau_i^k = 1 + \text{avg.}$ from Uruguay Round (1986-1994)
- 3. **Removal of current output market distortions:** Smaller but significant distortions remain despite multi- and bi-lateral trade agreements
 - Implementation: set $\tau_i^k = 1$ for all i, k


Uruguay Round lowered subsidies in the north, raised them in the south


Uruguay Round increased water extraction in the south


Removing current distortions lowers subsidies to ag. nearly everywhere


Removing current distortions lowers water extraction nearly everywhere

Global water extraction falls under both counterfactual policies

Global welfare rises under both counterfactual policies

Conclusion

Next steps

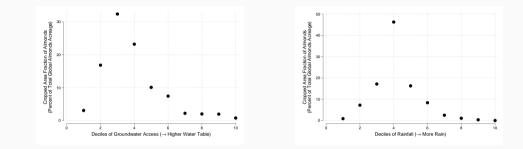
1. Improve calibration

- Allow for double and triple-cropping (currently running!)
- Incorporate heterogeneous ϕ^k_i water intensities
- Allow fixed differences in water table depth within aquifer
- Match non-ag GDP / refine welfare calculations

2. Additional counterfactuals

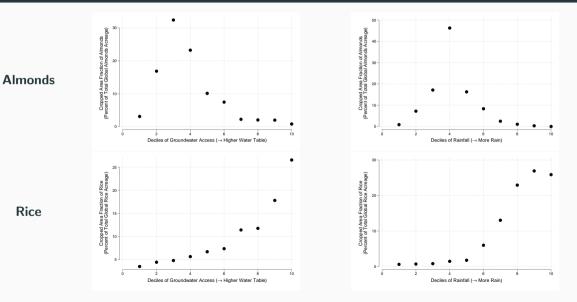
- India rice export ban
- EU import restrictions from water-depleting regions
- 3. Solve social planner's problem and compare to optimal allocation (next paper)

- Effects of ag./trade policy on water resources and long-run welfare **not ex ante obvious** with ubiquitous water property rights failures
- Comprehensive global data show water-intensive production **highly concentrated** in water-abundant locations
 - ightarrow Suggests a beneficial role for ag. trade in alleviating water stress
- Model counterfactuals show that **eliminating ag. trade causes global water depletion and declining welfare over time**, especially in drier food-importing regions
 - ightarrow But some historic agricultural trade/policy distortions were water-saving
 - $\rightarrow\,$ And some food exporters with poor property rights over water lose from trade

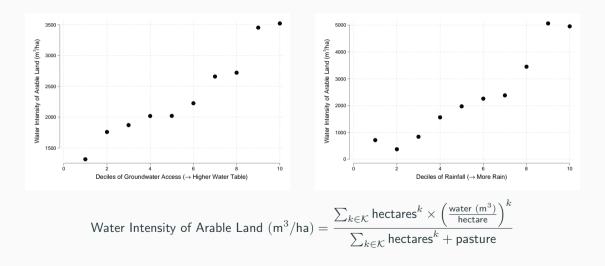

Thank you!

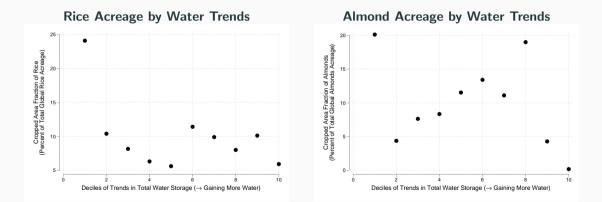
lcrews@princeton.edu

Appendix

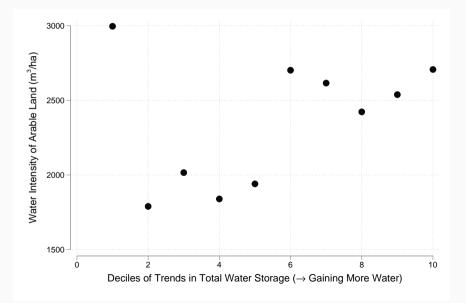

Almonds

Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

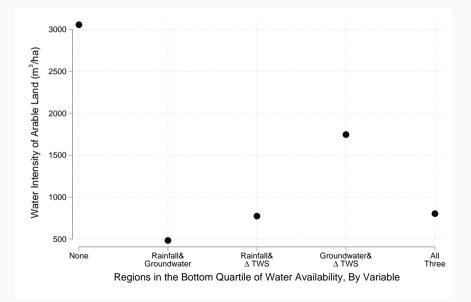


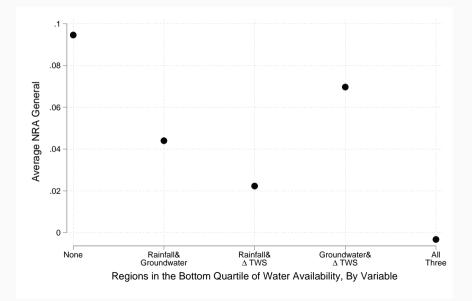

Almonds

Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

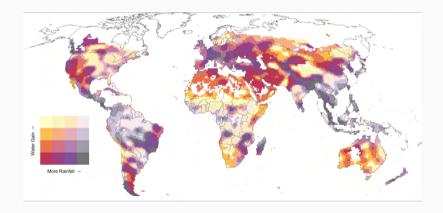


Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

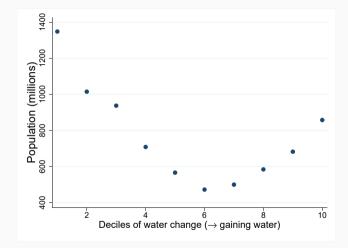



Fact 5: ... but also in some regions losing water rapidly

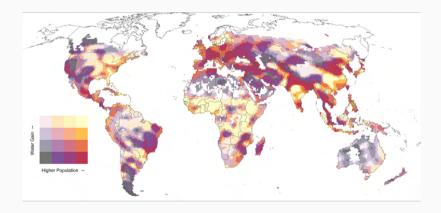
Fact 5: ... but also in some regions losing water rapidly


Fact 5: Similar patterns in water intensity and agricultural policy

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)

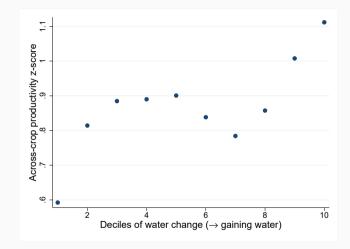


Regions losing water rapidly are disproportionately already water-scarce

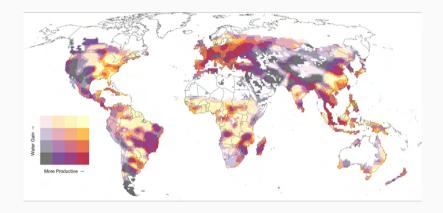


Regions losing water rapidly are disproportionately already water-scarce

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)



Regions losing water rapidly are very highly populated



Regions losing water rapidly are very highly populated

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)

Regions losing water rapidly have low suitability for crops

Regions losing water rapidly have low suitability for crops

Utility maximization by the representative household in each country requires that

$$C_{jit}^{k} = \zeta_{i} \frac{\zeta_{i}^{k} \left(P_{it}^{k}\right)^{1-\kappa}}{\sum_{\ell \in \mathcal{K}} \zeta_{i}^{\ell} \left(P_{it}^{\ell}\right)^{1-\kappa}} \frac{\zeta_{ji}^{k} \left(\delta_{ji}^{k} p_{jt}^{k}\right)^{-\sigma}}{\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}} \quad \text{for all } i, j \in \mathcal{I}, \ k \in \mathcal{K},$$

where

$$P_{it}^{k} = \left[\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

denotes the CES price index associated with crop k in country i at time t.

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{split} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{split}$$

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

• Total production: adding across fields & incorporating selection

$$Q_{it}^k = \sum_{f \in \mathcal{F}_i} h^f A^{fk} M(\phi^k, D_{qt}) \left(\pi_t^{fk}\right)^{\frac{\theta - 1}{\theta}}$$

Parameters to be calibrated/estimated

σ , κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A^o_i\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$

 \Box v elasticity of extraction productivity

Parameter		Value	Source
labor share	α	0.75	Boppart et al. (2019)
return flow rate	ψ	0.25	Dewandel et al. (2008)
extraction elasticity	v	1.0	Burlig, Preonas, and Woerman (2021)
water intensity	$\{\phi^k\}$		convert from Mekonnen and Hoekstra (2011)
specific yield	$\{\rho_q\}$		s.y. by soil type (Loheide, Butler, and Gorelick, 2005)
			soil type (Hengl et al., 2017)
natural recharge	$\{R_q\}$		residual of avg. ΔTWS from NASA's GRACE data
			& implied water use based on $\{\phi^k\}$ and obs. $\{\pi^{fk}\}$
			from SAGE (Monfreda, Ramankutty, and Foley, 2008)

Parameters to be calibrated/estimated

σ, κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A_i^o\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
υ	elasticity of extraction productivity

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

3. That regression identifies $\sigma,$ and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

 $2.\ \mbox{If positive, run IV on}$

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

 $2.\ \mbox{If positive, run IV on}$

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

Absorb all extra variation in taste imes trade cost parameters \implies exactly match demand side

Parameters to be calibrated/estimated

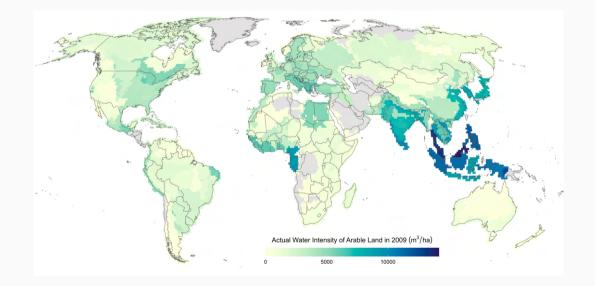
σ, κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A_i^o\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
υ	elasticity of extraction productivity

Estimate θ , $\{A_i^o\}$, and $\{\Upsilon_q\}$ jointly via **nonlinear least squares** (NLS):

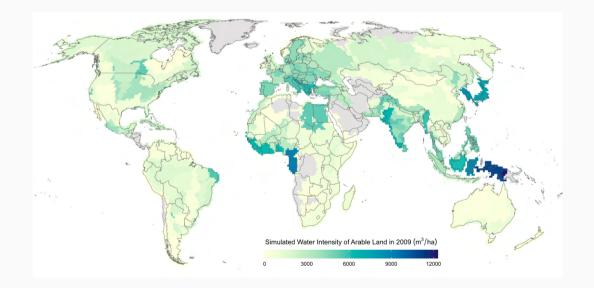
$$\min_{\theta, \{A_i^o\}, \{\Upsilon_q\}} \sum_i \sum_k \left[\ln Q_i^k(\theta, \{A_i^o\}, \{\Upsilon_q\}) - \ln Q_i^k \right]^2 \text{ s.t. } X_q = X_q(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall q$$
$$L_i = L_i(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall i$$

where *observed* extraction is

$$X_q \coloneqq \sum_{f \in \mathcal{F}_q} \sum_{k \in \mathcal{K}} h^f \pi^{fk} \phi^k$$


Intuition for identification

- Share of non-cultivated land \leftrightarrow non-agricultural labor productivity
- Water extracted \leftrightarrow labor productivity of extraction
- $\bullet\,$ Cross-parcel dispersion in productivity $\leftrightarrow\,$ cross-crop dispersion in output


Parameters to be calibrated/estimated

σ, κ	demand elasticities
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
α	labor share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity (Fréchet shape parameter)
$\{A^o_i\}$	mean labor productivity in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity $A^w_q(D) = \Upsilon_q D^{-\upsilon}$
v	elasticity of extraction productivity

Model fit: Agricultural water extraction (Target)

Model fit: Agricultural water extraction (Simulated)

Model validation: Water extraction productivity

Table 1: Partial Correlations of Aquifer-Level Covariates, Impact of Depth on Extraction Productivity (Υ_q) , and Extraction Productivity $(A_q^w(D_{qt}))$

	Dependent Variable	
	$\log(\Upsilon)$	$\log(A_q^w(D_{qt}))$
Precipitation	0.64**	0.54*
	(0.25)	(0.28)
Precipitation ²	-0.11**	-0.08**
	(0.03)	(0.03)
Temperature	0.26***	0.17***
	(0.04)	(0.05)
$Temperature^2$	-0.004***	-0.003*
	(0.001)	(0.002)
Area irrigated (%)	0.10^{*}	0.10^{*}
	(0.05)	(0.05)
Nighttime luminosity	0.20***	0.18**
	(0.07)	(0.01)
Surface water area (%)	-0.02**	-0.02*
	(0.01)	(0.01)
Groundwater depth (m)		0.04***
		(0.01)
R^2	0.56	0.40

References

- Anderson, Kym, Gordon Rausser, and Johan Swinnen. 2013. "Political economy of public policies: Insights from distortions to agricultural and food markets." *Journal of Economic Literature* 51 (2):423–77.
- Ayres, Andrew B., Kyle C. Meng, and Andrew J. Plantinga. 2021. "Do environmental markets improve on open access? Evidence from California groundwater rights." *Journal of Political Economy* 121 (10).
- Berrittella, Maria, Katrin Rehdanz, Richard S. J. Tol, and Jian Zhang. 2008. "The impact of trade liberalization on water use: A computable general equilibrium analysis." *Journal of Economic Integration* :631–655.
- Boppart, Timo, Patrick Kiernan, Per Krusell, and Hannes Malmberg. 2019. "The macroeconomics of intensive agriculture."
- Brander, James A. and M. Scott Taylor. 1997. "International trade and open-access renewable resources: The small open economy case." *Canadian Journal of Economics* 30 (3):526.
- Bruno, Ellen M. and Katrina Jessoe. 2021. "Missing markets: Evidence on agricultural groundwater demand from volumetric pricing." *Journal of Public Economics* 196.
- Burlig, Fiona, Louis Preonas, and Matt Woerman. 2021. "Energy, groundwater, and crop choice." National Bureau of Economic Research, Working Paper 28706.

Carleton, Tamma. 2021. "The global water footprint of distortionary agricultural policy."

- Carr, Joel A., Paolo D'Odorico, Francesco Laio, and Luca Ridolfi. 2013. "Recent history and geography of virtual water trade." *PLoS ONE* 8 (2).
- Chichilnisky, Graciela. 1994. "North-south trade and the global environment." *American Economic Review* 84 (4):851–874.
- Copeland, Brian R., Joseph S. Shapiro, and M. Scott Taylor. 2022. "Globalization and the environment." In *Handbook of International Economics*, vol. 5, edited by Gita Gopinath, Elhanan Helpman, and Kenneth Rogoff, chap. 2. Elsevier, 61–146.
- Costinot, Arnaud, Dave Donaldson, and Cory Smith. 2016. "Evolving comparative advantage and the impact of climate change in agricultural markets: Evidence from 1.7 million fields around the world." *Journal of Political Economy* 124 (1):205–248.
- Dalin, Carole, Yoshihide Wada, Thomas Kastner, and Michael J. Puma. 2017. "Groundwater depletion embedded in international food trade." *Nature* 543 (7647):700–704.
- Debaere, Peter. 2014. "The global economics of water: Is water a source of comparative advantage?" American Economic Journal: Applied Economics 6 (2):32–48.
- Dewandel, B., J.-M. Gandolfi, D. de Condappa, and S. Ahmed. 2008. "An efficient

methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale." *Hydrological Processes* 22 (11):1700–1712.

- d'Odorico, Paolo, Joel Carr, Carole Dalin, Jampel Dell'Angelo, Megan Konar, Francesco Laio, Luca Ridolfi, Lorenzo Rosa, Samir Suweis, Stefania Tamea, and Marta Tuninetti. 2019.
 "Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts." *Environmental Research Letters* 14 (5).
- Dubois, Olivier et al. 2011. The state of the world's land and water resources for food and agriculture: Managing systems at risk. London: Earthscan.
- Fan, Y., H. Li, and G. Miguez-Macho. 2013. "Global patterns of groundwater table depth." *Science* 339 (6122):940–943.
- Farrokhi, Farid, Elliot Kang, Heitor S. Pellegrina, and Sebastian Sotelo. 2023. "Deforestation: A global and dynamic perspective."
- Hengl, Tomislav, Jorge Mendes de Jesus, Gerard B. M. Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, Aleksandar Blagotić, Wei Shangguan, Marvin N. Wright, Xiaoyuan Geng, Bernhard Bauer-Marschallinger, Mario Antonio Guevara, Rodrigo Vargas, Robert A. MacMillan, Niels H. Batjes, Johan G. B. Leenaars, Eloi Ribeiro, Ichsani Wheeler, Stephan

- Mantel, and Bas Kempen. 2017. "SoilGrids250m: Global gridded soil information based on machine learning." *PLOS ONE* 12 (2).
- Hoekstra, Arjen Y. and Mesfin M. Mekonnen. 2012. "The water footprint of humanity." *Proceedings of the National Academy of Sciences* 109 (9):3232–3237.
- Loheide, Steven P., James J. Butler, and Steven M. Gorelick. 2005. "Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment." *Water Resources Research* 41 (7).
- Mekonnen, M. M. and A. Y. Hoekstra. 2011. "The green, blue and grey water footprint of crops and derived crop products." *Hydrology and Earth System Sciences* 15 (5):1577–1600.
 Monfreda, Chad, Navin Ramankutty, and Jonathan A. Foley. 2008. "Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000." *Global Biogeochemical Cycles* 22 (1).
- Pekel, Jean-François, Andrew Cottam, Noel Gorelick, and Alan S. Belward. 2016. "High-resolution mapping of global surface water and its long-term changes." *Nature* 540:418–422.
- Rafey, Will. 2023. "Droughts, deluges, and (river) diversions: Valuing market-based water reallocation." *American Economic Review* 113 (2):430–471.

- Richter, B. 2016. "Water share: Using water markets and impact investment to drive sustainability." The Nature Conservancy, Tech. rep., Washington, D.C.
- Sekhri, Sheetal. 2022. "Agricultural trade and depletion of groundwater." *Journal of Development Economics* 156.
- Sheffield, Justin, Gopi Goteti, and Eric F. Wood. 2006. "Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling." *Journal of Climate* 19 (13):3088–3111.
- Tapley, Byron D., Srinivas Bettadpur, John C. Ries, Paul F. Thompson, and Michael M. Watkins. 2004. "GRACE measurements of mass variability in the earth system." *Science* 305 (5683):503–505.
- Trabucco, Antonio and Robert Zomer. 2019. "Global Aridity Index and Potential Evapotranspiration (ETO) Climate Database v2."