

Some of the following problems are adapted from [Jones and Vollrath \(2024, Ch.2\)](#). To practice for the exams, **please show your work**.

- 1. TFUs.** Determine whether the following statements are **true**, **false**, or **uncertain**, and justify your answer in no more than one paragraph. Please be concise.¹
 - In steady state, the growth rate of the capital stock (g_K) is equal to the growth rate of GDP (g_Y).
 - A steady state of the Solow model exists for any value of $\alpha \in [0, 1]$.
 - Along a balanced growth path, the savings rate (s) affects both the *level* and the *growth rate* of GDP per capita.
- 2. Comparative statics.** For each of the following scenarios, assume that the economy begins in a steady state. For each scenario, draw three figures showing how each of the following terms evolve over time: the amount of capital per efficiency unit of labor (\tilde{k}_t), the growth rate of GDP per capita (g_y), and the log of GDP per capita ($\ln(y_t)$). Be sure to clearly label all axes and curves in your figures.
 - The savings rate (s) drops to a lower value and stays there permanently.
 - The growth rate of productivity (g_A) rises to a higher value and stays there permanently.
 - There is a one-time decrease in the size of the capital stock (K).
- 3. Harrod- vs. Hicks-neutral productivity.** The goal of this problem is to demonstrate that the Solow model with a Cobb-Douglas production function can also be solved if productivity is specified as Hicks-neutral rather than Harrod-neutral.
 - Consider two production functions:

$$Y_t = K_t^\alpha (A_t L_t)^{1-\alpha} \quad (\text{Harrod-neutral})$$

$$Y_t = B_t K_t^\alpha L_t^{1-\alpha} \quad (\text{Hicks-neutral})$$

What must be the relationship between A_t and B_t for these two production functions to yield the same output for the same inputs at all t ? What must be the relationship between g_A and g_B ?

- Suppose that firms in the economy use the Hicks-neutral production function. What is the rental rate they pay for capital (r_t)? What is the wage they pay for labor (w_t)?
- Let $k_t \equiv K_t/L_t$ be capital per worker. Derive an expression for GDP per capita ($y_t = Y_t/L_t$) in terms of k_t and B_t .
- Derive an expression for the growth rate of GDP per capita (g_y) in terms of α , g_K , g_L , and g_B . Is this consistent with your answer to part (a) and the expression we derived in class for the Harrod-neutral case?
- Using the capital accumulation equation, try to derive an expression for the growth rate of capital per worker, g_k , in terms of only k_t , α , s , δ , g_B , and g_L . What's the problem?

¹On an exam, your score would be based almost entirely on the justification you provide, not on the specific **TFU** designation you choose.

- (f) Using your answer from part (a), derive an expression for capital per efficiency unit of labor (\tilde{k}_t) in terms of the Hicks-neutral productivity (B_t). Then derive an expression for its growth rate, $g_{\tilde{k}}$, in terms of only \tilde{k}_t , α , s , δ , g_B , and g_L .
- (g) Using that expression, solve for steady state \tilde{k}^{ss} .
- (h) Along the balanced growth path, what's the growth rate of GDP per capita in terms of g_B ? Now, using your answer from part (a), write it in terms of g_A . Is this consistent with the Harrod-neutral case?

Jones, Charles I. and Dietrich Vollrath. 2024. *Introduction to economic growth*. New York: W.W. Norton & Company, fourth ed.