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Recap

• Last time, we developed the Solow model, which has two building blocks:
• the aggregate production function:

Yt = Kα
t (AtLt)

1−α

• endogenous capital accumulation. . .

K̇t = sYt − δKt

• But this picture is incomplete: what determines variation in s?

• This week: Solow w/ endogenous saving→ Ramsey-Cass-Koopmans model
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• Last time, we developed the Solow model, which has two building blocks:
• the aggregate production function:

Yt = Kα
t (AtLt)

1−α

• endogenous capital accumulation w/ exogenous saving rate:

K̇t = sYt − δKt

• But this picture is incomplete: what determines variation in s?

• This week: Solow w/ endogenous saving→ Ramsey-Cass-Koopmans model

(in discrete time, h/t Adrien Bilal)
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https://sites.google.com/site/adrienbilal/teaching?authuser=0


What are we saving for?

• Endogenizing saving behavior requires taking a stance on what we’re saving for

• Most of us save to spend more later!

• This is why we’ll be analyzing consumption and saving jointly
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What should go into a model of consumption/saving?

• Solow model: consumption/saving only depend on current income Yt

Ct = (1− s) · Yt, It = s · Yt

• What else should Ct and It depend on other than Yt?

• future Yt? age/life cycle?

• past Yt? wealth?

• impatience?

• interest rates? taxes?

• uncertainty?

• borrowing constraints?

• Take microfounded approach:
saving is chosen by a rational
utility-maximizing rep. HH

• This week: in discrete time. . .
• two periods (ECON 102)
• ∞ periods
• back to growth!
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Two-period consumption-saving



Utility function

Consider the behavior of a representative household over two periods (t = 1, 2)

• U(C) ≡ per-period (flow) utility of the household over consumption

• U ′(C) ≡ marginal utility
• assume positive but decreasing (→ U is strictly concave) [interpretation? ]
• e.g., if U(C) = lnC then U ′(C) = 1

C

• U(C1) + βU(C2) ≡ lifetime utility, where β ∈ (0, 1) is the discount factor
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Budget constraint

Suppose the household receives income Yt at date t for t = 1, 2

• saving S earns interest rate r

• the per-period (flow) budget constraints:

C1 + S = Y1

C2 = Y2 + (1 + r)S

• How to turn these two constraints into a single one?
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Present discounted value

The present discounted value (PDV) of a payment D at date t. . .

how much you need to save at date 0 to have D at date t

• Examples:
• To have $1 at t = 1, you need to save PDV = 1

1+r at t = 0

• To have $1 at t = 2, you need to save PDV = 1
(1+r)2 at t = 0

• What if you get $1 each year from this year onward?

PDV = 1 +
1

1 + r
+

1

(1 + r)2
+ . . . =

∞∑
i=0

(
1

1 + r

)i

︸ ︷︷ ︸
geometric sum

=
1

1− 1
1+r

=
1 + r

r
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The lifetime budget constraint

Combine the per-period budget constraints into a single lifetime budget constraint:

1. Divide the second period constraint by (1 + r):

C2 = Y2 + (1 + r)S → C2

1 + r
=

Y2
1 + r

+ S

2. Substitute in S = Y1 − C1:

C1 +
C2

1 + r︸ ︷︷ ︸
PDV of consumption

= Y1 +
Y2

1 + r︸ ︷︷ ︸
PDV of income

Coming up: this holds more generally!
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Two formulations of the two-period consumption-saving problem

1. The per-period formulation:

max
C1,C2,S

U(C1) + βU(C2) s.t. C1 + S = Y1

C2 = Y2 + (1 + r)S

2. The lifetime formulation:

max
C1,C2

U(C1) + βU(C2) s.t. C1 +
C2

1 + r
= Y1 +

Y2
1 + r
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Two ways to solve

Substitution→ unconstrained optimization
using per-period budget constraints. . .

max
S

U(Y1 − S) + βU(Y2 + (1 + r)S)

→ U ′(Y1 − S) = β(1 + r)U ′(Y2 + (1 + r)S)

Lagrangian = constrained optimization
using lifetime budget constraint. . .

max
C1,C2

U(C1) + βU(C2)

+ λ

(
Y1 +

Y2

1 + r
− C1 −

C2

1 + r

)
→ U ′(C1) = λ, βU ′(C2) =

λ

1 + rEither way, end up with the same Euler equation:

U ′(C1)︸ ︷︷ ︸
MU if consume one more unit this period

= β(1 + r)U ′(C2)︸ ︷︷ ︸
MU if save one more unit this period
→ consume 1 + r more next period

With the budget constraint(s), uniquely pins down C1, C2, S
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Two examples

1. If rate of time preference = interest rate:

perfect consumption smoothing

U ′(C1) = β(1 + r)︸ ︷︷ ︸
=1

U ′(C2) → C1 = C2

so period-1 savings are

S = Y1 − C1 =
Y1 − Y2

2 + r

2. If log utility:

1

C1
= β(1 + r)

1

C2
→ C2 = β(1 + r)C1

so period-1 savings are

S = Y1 − C1 =
βY1 − Y2

1+r

1 + β
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Are you on your Euler equation?
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Infinite-horizon consumption-saving



Infinite-horizon utility function

• Why ∞? Clearly people do not live forever. . .
• Yes, but each generation does care about the next one→ saves to leave bequests
• So could interpret each person as part of an “infinite dynasty”
• Practically, the math for infinite lives is nicer than for finite lives

• Label periods by t = 0, 1, 2, . . . (start at date 0). Consumption at date t ≡ Ct.

• So now lifetime utility is

U(C0) + βU(C1) + β2U(C2) + . . . =

∞∑∑∑
t=0

βtU(Ct)
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• So now lifetime utility is

U(C0) + βU(C1) + β2U(C2) + . . . =

∞∑∑∑
t=0

βtU(Ct)

(can we do this if β = 1?)
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Infinite-horizon per-period budget constraints

• Now agents can save over many periods

• St ≡ stock of savings going into period t, earns interest rate r

• S0 ≡ initial wealth at the beginning of period 0

• Get an infinite sequence of per-period (flow) budget constraints

C0 + S1 = (1 + r)S0 + Y0

C1 + S2 = (1 + r)S1 + Y1

C2 + S3 = (1 + r)S2 + Y2

...

Ct + St+1 = (1+ r)St + Yt for t = 0, 1, 2, . . .
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Infinite-horizon lifetime budget constraint

• We can again combine all the per-period constraints into a lifetime constraint

• Solve out per-period consumption Ct and take PDVs from date 0

C0 = (1 + r)S0 + Y0 − S1 → C0 = (1 + r)S0 + Y0 − S1

C1 = (1 + r)S1 + Y1 − S2 → C1

1 + r
= S1 +

Y1
1 + r

− S2

1 + r

C2 = (1 + r)S2 + Y2 − S3 → C2

(1 + r)2
=

S2

1 + r
+

Y2
(1 + r)2

− S3

(1 + r)2

...
...

∞∑∑∑
t=0

Ct

(1 + r)t
= (1+ r)S0 +

∞∑∑∑
t=0

Yt

(1 + r)t
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Two formulations of the infinite-horizon consumption-saving problem

1. The per-period formulation:

max
{Ct,St}

∞∑
t=0

βtU(Ct) s.t. Ct + St+1 = (1 + r)St + Yt for t = 0, 1, 2, . . .

2. The lifetime formulation:

max
{Ct}

∞∑
t=0

βtU(Ct) s.t.
∞∑
t=0

Ct

(1 + r)t
= (1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t
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Two formulations of the infinite-horizon consumption-saving problem

1. The per-period formulation: solve via substitution

max
{Ct,St}

∞∑
t=0

βtU(Ct) s.t. Ct + St+1 = (1 + r)St + Yt for t = 0, 1, 2, . . .

2. The lifetime formulation: solve via Lagrangian

max
{Ct}

∞∑
t=0

βtU(Ct) s.t.
∞∑
t=0

Ct

(1 + r)t
= (1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

continuous time: solve via Hamiltonian

(Barro and Sala-i Martin, 2004)

16 / 48



Solving via the Lagrangian (Kurlat, 2020, § 6.3)

The Lagrangian for the lifetime formulation is

L({Ct}) =
∞∑
t=0

βtU(Ct) + λ

[
(1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

−
∞∑
t=0

Ct

(1 + r)t

]

The first-order conditions w.r.t. any particular Ct and Ct+1 are

0 =
∂L
∂Ct

= βtU ′(Ct)− λ
1

(1 + r)t

0 =
∂L

∂Ct+1
= βt+1U ′(Ct+1)− λ

1

(1 + r)t+1

Solving for λ and rearranging recovers the Euler equation: for t = 0, 1, 2, . . .

U ′(Ct) = β(1 + r)U ′(Ct+1)
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Characterizing the solution

The solution is then the unique set of C0, C1, C2, . . . that solve

U ′(Ct) = β(1 + r)U ′(Ct+1) ∀ t,
∞∑
t=0

Ct

(1 + r)t
= (1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

With log utility, the Euler equation simplifies to Ct+1 = β(1 + r)Ct, so

Ct = βt(1 + r)tC0

C0 =

(
(1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

)
/

( ∞∑
t=0

βt

)

=

(
(1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

)
/

(
1

1− β

)

= (1− β)

(
(1 + r)S0 +

∞∑∑∑
t=0

Yt

(1 + r)t

)
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Ct = βt(1 + r)tC0

C0 =

(
(1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

)
/

( ∞∑
t=0

βt

)

=

(
(1 + r)S0 +

∞∑
t=0

Yt
(1 + r)t

)
/

(
1

1− β

)

= (1− β)

(
(1 + r)S0 +

∞∑∑∑
t=0

Yt

(1 + r)t

)
18 / 48



Taking stock

• What else should Ct and It depend on other than current income Yt?

• Take microfounded approach:

saving is chosen by a rational utility-maximizing rep. HH over∞ periods

□✓ future Yt? age/life cycle?

□✓ past Yt? wealth?

□✓ impatience?

□✓ interest rates? taxes?

□ uncertainty?

□ borrowing constraints?

So, turning back to growth. . .

opportunities vs. necessities

(modern macro inc. all these and more!)
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Revisiting the Solow model



Consumption in the Solow model, revisited

Recall from last week. . .

yBGP
t = At

(
k̃ss
)α

= At

(
s

δ + gA + gL

) α
1−α

. . . so should we just max out w/ s = 1?

Not if what matters for utility is consumption:

cBGP
t = (1− s)yBGP

t = (1− s)At

(
s

δ + gA + gL

) α
1−α
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The “golden rule” to optimize steady-state consumption (Phelps, 1961)

Let’s work w/ detrended consumption:

c̃ss ≡ cBGP
t

At
= (1−s)

yBGP
t

At
≡ (1−s)ỹss

← What is that curve?

c̃ss = (1− s) ·
[
k̃ss(s)

]α
All values of c̃ consistent with gk̃ = 0
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The “golden rule” to optimize steady-state consumption (Phelps, 1961)

Solving maxs c̃ss:

ỹss = (1− s)
∂ỹss

∂s
s

1− s
=

∂ỹss

∂s

s

ỹss

s

1− s
=

α

1− α

sGR = α

What’s the intuition?
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The Solow model in discrete time

As we switch into discrete time, let’s simplify: Lt = 1, At = 1 ∀t→ Kt = kt = k̃t

1. aggregate production function:

yt = F (kt, 1) = kαt

2. capital accumulation:

but we can split that into. . .

kt+1 = [F (kt,1)− ct]+ (1− δ)kt, ct = (1− s)F (kt, 1)

A steady state is a point where kt+1−kt

∆t
= 0 → kt+1 = kt → ct+1 = ct
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(Re)introducing the c-k phase diagram
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For any k0, different consumption rules → different transition paths

24 / 48



Some paths are clearly inferior to others. . .
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Solow consumption rule → just one particular path
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The Ramsey-Cass-Koopmans model



Overview

• The Ramsey-Cass-Koopmans model will be our first fully modern macro model

• Main idea: Want to replace the ad-hoc consumption rule of the Solow model. . .
• . . . with consumption behavior from a utility-maximizing∞-horizon household

• Two approaches to set up this model
• Describe as general equilibrium

• Representative household & firm, interact thru markets [will focus on this one!]

• Describe as planning problem
• A “benevolent planner” maximizes household utility s.t. resource constraints

• Note: Both yield the same, so we say that the model is first-best efficient
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General equilibrium
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Household optimization problem

• Household earns wage wt and accumulates a stock of assets at entering period t

• last class: income was denoted by Yt and savings by St

• in general equilibrium, using wt and at is somewhat more common

• Household now faces time-varying interest rate rt in period t

• Household then solves for its optimal consumption path {ct}:

max
{ct}

∞∑
t=0

βtU(ct) s.t. ct + at+1 = (1 + rt)at + wt for t = 0, 1, 2, . . .

which is characterized by the Euler equation

U ′(ct) = β(1 + rt+1)U
′(ct+1) for t = 0, 1, 2, . . .

and budget feasibility (recall from last class!)
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Firm optimization problem

• In a general equilibrium model, we also need to describe:

• what the household saves in. . .

• . . . and who pays the wage

• Suppose there is a representative firm that, each period:

• Rents capital kt from the household at rate Rt = rt + δ

• compensate household for opportunity cost (rt) and depreciation (δ)
• note: what we called r in the Solow model would here be Rt

• Employs the household at wage wt

max
kt,ℓt

F (kt, ℓt)︸ ︷︷ ︸
revenue

capital
expenditures︷ ︸︸ ︷
−(rt + δ)kt −wtℓt︸ ︷︷ ︸

wage
payments

∂F (kt, ℓt)

∂kt
≡ Fk(kt, ℓt) = rt + δ

∂F (kt, ℓt)

∂ℓt
≡ Fℓ(kt, ℓt) = wt
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Defining equilibrium

A competitive equilibrium consists of quantities {ct, at, kt, ℓt} and prices {rt, wt} s.t.

1. The household optimally picks {ct, at} given {rt, wt}

U ′(ct) = β(1 + rt+1)U
′(ct+1), ct + at+1 = (1 + rt)at + wt for t = 0, 1, 2, . . .

2. The firm optimally picks {kt, ℓt} given {rt, wt}

Fk(kt, ℓt) = rt + δ, Fℓ(kt, ℓt) = wt

3. The asset market clears: kt = at

4. The labor market clears: ℓt = 1

5. The resource constraint holds: (check: already implied by #1–4)

kt+1 = F (kt, 1)− ct + (1− δ)kt
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Ramsey-Cass-Koopmans vs. Solow

Both have same resource constraint. . .

kt+1 = F (kt, 1)− ct + (1− δ)kt

. . . but different consumption rules:

ct = (1− s)F (kt, 1)

vs.

U ′(ct) = β[1 + rt+1]U
′(ct+1)

How can we solve this system? Just like Solow!

1. Characterize the steady state

2. Analyze transitions using c-k phase diagram
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Steady state

A steady state is a pair {css, kss} at which optimally. . .

ct = ct+1 = css → U ′(css) = β [1 + Fk (k
ss, 1)− δ]U ′(css)

Fk (k
ss,1) =

1

β
− 1 + δ

kt = kt+1 = kss → kss = F (kss, 1)− css + (1− δ)kss

css = F (kss,1)− δkss

Can be shown: optimal {ct, kt} always converges to {css, kss}

(Check: What is the relationship between β and rss?)
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The “modified golden rule” to optimize the consumption path

Recall the golden rule (sGR = α): (Cobb-Douglas, Lt = 1, At = 1)

kss
Solow =

(
s

δ + gA + gL

) 1
1−α

→ kGR =
(α
δ

) 1
1−α

But, from the Kaldor facts: s ≈ 1
4 < 1

3 ≈ α→ should we be saving more?

The modified golden rule says not necessarily :

Fk (k
ss, 1) =

1

β
− 1 + δ → kMGR =

(
α

1
β − 1 + δ

) 1
1−α

< kGR

The golden rule didn’t account for impatience!
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What happens away from steady state?

Substitute the resource constraint into the Euler equation

U ′(ct) = β

1 + Fk(F (kt, 1)− ct + (1− δ)kt︸ ︷︷ ︸
kt+1: resource constraint

, 1)− δ

U ′(ct+1)

Cannot explicitly link consumption across periods anymore—depends on kt (thru rt)!

With Cobb-Douglas production and log utility. . .

ct+1 = β
[
1 + α(kαt − ct + (1− δ)kt)

α−1 − δ
]
ct
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From any given k0, how do we transition to steady state?
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The Brock-Mirman special case (Brock and Mirman, 1972)

Here’s a special case we can solve in closed-form: (Problem Set #3)

• Cobb-Douglas production function: F (kt, 1) = kαt

• Log utility: U(ct) = ln(ct)

• Full depreciation: δ = 1 (pretty unrealistics unless we use long time periods)

Then the optimal consumption rule is given by. . .

ct = (1− αβ)kαt

. . . which looks exactly like Solow just with endogenous savings rate s = αβ
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Applications

Let’s study two applications of the Ramsey-Cass-Koopmans model:

1. Compare two economies with different discount factors

• idea: Protestant culture should lead to greater patience

• idea: Aging economies should look like more patient economies

2. Introduce capital taxes

• idea: Economies with extractive institutions should end up saving less
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Application 1: Differences in discount factors
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Application 2: Introduce capital taxes

• Think of capital taxes as reducing the return on saving in the Euler equation

U ′(ct) = β[1 + rt+1(1− τ )]U ′(ct+1) → (1− τ ) [Fk (k
ss, 1)− δ] =

1

β
− 1

• capital taxes (τ ↑) have the same effect as less patience (β ↓)

• reduce capital accumulation and steady-state GDP per capita
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The neoclassical growth model (NGM)

F (Kt, AtLt) = Kα
t (AtLt)

1−α, Kt+1 = F (Kt,AtLt)−Ct + (1− δ)Kt

. . . with exogenous savings (the Solow model)

• ad-hoc consumption rule→ savings depend on current output yt only

. . . with endogenous savings (the Ramsey-Cass-Koopmans model)

• optimal consumption path→ savings depend on {wt, rt, τt}, β, k0, . . .

• can reincorporate population (gL) and productivity (gA) growth
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How does the NGM answer our three organizing questions?

1. Why are we so rich and they so poor?

→ differences in s (β, τ, . . .), gL, A0

2. What is the engine of economic growth?

→ gA, but exogenous!

3. How do “growth miracles” happen?

→ transitional growth (faster if farther from BGP)

Next week: How do these fit the data?
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Bonus: A better welfare metric?

• so far, we’ve compared economies i just by GDP per capita yit . . .

“Every year, you get a check for $yit (PPP-adjusted). . . ”

• . . . but this week, we’ve shown how to optimize consumption paths cit

“Every year, you choose to consume $cit (PPP-adjusted). . . ”

• begs the question: can we come up w/ a better welfare metric than just yit?
say, one that incorporates. . .

• optimal consumption-savings decisions?
• optimal labor-leisure decisions?
• mortality?
• inequality?
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Consumption-equivalent welfare (Jones and Klenow, 2016)

What proportion of consumption in the United States, given the US values of
leisure, mortality, and inequality, would deliver the same expected utility as
the values in country i?

We define consumption-equivalent welfare λi as the factor by which consumption in
country i must be multiplied to yield the same expected lifetime utility as in the US:

UUS(λi) = Ui(1)

Being a random person in country i (say, France) = Being a random person in
the US with your consumption scaled by λi.
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A concrete example (Jones and Klenow, 2016, §I.B)

Suppose everyone in the world has the same preferences:

U(c, ℓ) = ū+ ln(c) + v(ℓ)

with, for each country i, no discounting (β = 1), no consumption growth (gc = 0),
constant leisure (ℓi), known life expectancy (ei), and consumption distributed
LogNormal(ci, σc

i ) across people in i.

Then expected lifetime utility in i is. . .

Ui = ei [ū+ ln(ci) + v(ℓi)− 0.5σc
i ]

. . . and the (log) consumption-equivalent welfare in country i relative to the US is

lnλi =
ei − eUS

eUS
[ū+ ln(ci) + v(ℓi)− 0.5σc

i ] (Life expectancy)

+ ln ci − ln cUS (Consumption)

+ v(ℓi)− v(ℓUS) (Leisure)

− 0.5(σc
i − σc

US) (Inequality)

2
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GDP per capita is highly informative. . . (Jones and Klenow, 2016)
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. . . but still masks important variation (Jones and Klenow, 2016)
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That was for levels, but it’s likewise for growth (Jones and Klenow, 2016)
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