ECON 164: Theory of Economic Growth
Week 3: The Neoclassical Growth Model
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Winter 2026



e Last time, we developed the Solow model, which has two building blocks:

e the aggregate production function:
Y: = K (As L)' ™
e endogenous capital accumulation. ..

Kt = SK _5Kt
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e Last time, we developed the Solow model, which has two building blocks:

e the aggregate production function:
Y: = K{'(AeL)'
e endogenous capital accumulation w/ exogenous saving rate:

Kt = .Sn — 5Kt
e But this picture is incomplete: what determines variation in s?

e This week: Solow w/ endogenous saving — Ramsey-Cass-Koopmans model

(in discrete time, h/t Adrien Bilal)

2/48


https://sites.google.com/site/adrienbilal/teaching?authuser=0

What are we saving for?

e Endogenizing saving behavior requires taking a stance on what we're saving for
e Most of us save to spend more later!

e This is why we'll be analyzing consumption and saving jointly
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What should go into a model of consumption/saving?

e Solow model: consumption/saving only depend on current income Y,

Ci=(1-3) Y Ii=s-Y;
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What should go into a model of consumption/saving?

e Solow model: consumption/saving only depend on current income Y,
Ci=(1-3) Y Ii=s-Y;
e What else should C; and I; depend on other than Y;?

o future Y37 age/life cycle?
e past Y37 wealth?

e impatience?

e interest rates? taxes?

e uncertainty?

e borrowing constraints?
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What should go into a model of consumption/saving?

e Solow model: consumption/saving only depend on current income Y,
Ci=(1-3) Y Ii=s-Y;
e What else should C; and I; depend on other than Y;?

o future Y37 age/life cycle? e Take microfounded approach:
e past Y;? wealth? saving is chosen by a rational
o fseianse? utility-maximizing rep. HH

e This week: in discrete time. ..

e two periods (ECON 102)
e 00 periods

e interest rates? taxes?
e uncertainty?

e borrowing constraints? e back to growth!
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Two-period consumption-saving



Utility function

Consider the behavior of a representative household over two periods (¢ = 1, 2)
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Utility function

Consider the behavior of a representative household over two periods (¢ = 1, 2)

e U(C) = per-period (flow) utility of the household over consumption

[interpretation?]

e U’(C) = marginal utility
e assume positive but decreasing (— U is strictly concave)

o eg., if U(C)=InC then U'(C) = &

e U(C1) 4+ BU(C2) = lifetime utility, where 8 € (0, 1) is the discount factor
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Budget constraint

Suppose the household receives income Y; at date ¢ for ¢t = 1,2

e saving S earns interest rate r
e the per-period (flow) budget constraints:

Ci+S=Y
Co=Yo+(1+1r)S

e How to turn these two constraints into a single one?
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Present discounted value

The present discounted value (PDV) of a payment D at date ¢.. .

how much you need to save at date 0 to have D at date t
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Present discounted value

The present discounted value (PDV) of a payment D at date ¢.. .

how much you need to save at date 0 to have D at date t

e Examples:

e To have $1 at t = 1, you need to save PDV = ﬁ att =20
e To have $1 at t = 2, you need to save PDV = (1%)2 att =0

e What if you get $1 each year from this year onward?

1 1 e 1\ 1 1+7r
PDV = 1 = _ _
+1+7“+(1—|—7‘)2+ ;(14—7“) 1— -1 r

geometric sum
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The lifetime budget constraint

Combine the per-period budget constraints into a single lifetime budget constraint:

1. Divide the second period constraint by (1 + 7):

Co Ys

Cy =Y 1 S = = S
2 2+ (1+7) 14+7r» 147 *
2. Substitute in S =Y — Ci:
CQ Y2
C = Y
1o 1+7r 1°F 1+7r
PDV of consumption PDV of income
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The lifetime budget constraint

Combine the per-period budget constraints into a single lifetime budget constraint:

1. Divide the second period constraint by (1 + 7):

Co Ys

Cy =Y 1 S = = S
2 2+ (1+7) 14+7r» 147 *
2. Substitute in S =Y — Ci:
CQ Y2
C = Y
1o 1+7r 1°F 1+7r
PDV of consumption PDV of income

Coming up: this holds more generally!
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Two formulations of the two-period consumption-saving problem

1. The per-period formulation:

max U(Cl) + BU(CQ) st. C1+S=Y"

C1,Cq,

Co=Ya+(1+m)S

2. The lifetime formulation:

Cy Yo
t. =Y
gllac)é U(Cl)—i-ﬁU(Cg) s.t Cl+1—|—r 1+1+T
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Two ways to solve

Substitution — unconstrained optimization

using per-period budget constraints. ..
max UYr - S)+pU Y2+ (1+1)5)

UMY —=8)=81+nrU'(Y2+ (1+71)S)
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Two ways to solve

Substitution — unconstrained optimization Lagrangian = constrained optimization
using per-period budget constraints. .. using lifetime budget constraint. ..
max U(Y — 8) +BU(Yz + (1+7)8) max U(C1) +BU(Cy)
— U'(Yi — 8) = B+ 1)U (Ya + (1 +1)8) a(ne o -
1+7r 1+7r
A

—)U’(Cl):A, BU’(CQ): 117
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Two ways to solve

Substitution — unconstrained optimization Lagrangian = constrained optimization
using per-period budget constraints. .. using lifetime budget constraint. ..

max U(Y1 = 8) + BU(Y2 + (1+7)5) max U(C1) + AU(C)

— U'(Yi - 8) = BL+ 1)U (Ya + (1 +7)S) e (yl SR CENORC: )

1+7r 1+7r
A
/ — )\ ! —
= U'(C1) = A, BU(C2) T+

Either way, end up with the same Euler equation:

U'(C1) =B +r)U'(Cs)
——

MU if consume one more unit this period MU if save one more unit this period
— consume 1 + 7 more next period

With the budget constraint(s), uniquely pins down Cy, C2, S
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Two examples

1. If rate of time preference = interest rate:

2. If log utility:
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Yi.—- Y.
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Two examples

1. If rate of time preference = interest rate: perfect consumption smoothing

U'(C1) =B(L+r)U(C2) — C1=Co
=1
so period-1 savings are

Y1 — Y,
S=Y1-C,=—-"=
247
2. If log utility:
1 1
— =p(1 — C, =p3(1 C
c B( +T)02 — C2=p(1+7)Ch
so period-1 savings are
BY: — o7
S=Y]-C; = Rt
1+ 7
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Are you on your Euler equation?

income

Goldman
Sachs

A 4

graduation
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Are you on your Euler equation?
income
* ifp-(1+r) =1= constant consumption! /
spending (Euler)
Goldman
Sachs spending (real life)

A 4

graduation
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Infinite-horizon consumption-saving



Infinite-horizon utility function

e Why oo? Clearly people do not live forever. . .

e Yes, but each generation does care about the next one — saves to leave bequests
e So could interpret each person as part of an “infinite dynasty”
e Practically, the math for infinite lives is nicer than for finite lives

e Label periods by t = 0,1,2,... (start at date 0). Consumption at date t = C}.

e So now lifetime utility is

U(Co) + BU(C1) + B2U(Cs) + ZﬂfU(ct

t=0
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Infinite-horizon utility function

e Why oo? Clearly people do not live forever. . .

e Yes, but each generation does care about the next one — saves to leave bequests
e So could interpret each person as part of an “infinite dynasty”
e Practically, the math for infinite lives is nicer than for finite lives

o Label periods by ¢t =0, 1,2, ... (start at date 0). Consumption at date ¢t = C.
e So now lifetime utility is

oo

U(Co) + BU(C1) + B2U(Co) +...= Y B'U(Cy)

t=0

(can we do this if 3 = 17)
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Infinite-horizon per-period budget constraints

e Now agents can save over many periods
e S; = stock of savings going into period t, earns interest rate r
e So = initial wealth at the beginning of period 0

e Get an infinite sequence of per-period (flow) budget constraints

Co+81:(1+7”)50+}/0
Cir+S=014+r)S1+Y;
Cy+ S3=(141)S2+Ys
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Infinite-horizon per-period budget constraints

e Now agents can save over many periods
e S; = stock of savings going into period t, earns interest rate r
e So = initial wealth at the beginning of period 0

e Get an infinite sequence of per-period (flow) budget constraints

Co+81:(1+7”)50+}/0
Cir+S=014+r)S1+Y;
Cy+ S3=(141)S2+Ys

Cf+St+1:(1+71)Sf+1/% fort:0,1,2,...
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Infinite-horizon lifetime budget constraint

e We can again combine all the per-period constraints into a lifetime constraint

e Solve out per-period consumption C; and take PDVs from date 0

C()Z(l—l—T)So-i-Yo—Sl — 00:(1+T)S0+YE)_S1
_ Cl o Yl SQ
Cl—(1+T)S1+Y1 Sy — 1—|—T‘_Sl+1+7” T+7
C S Y5 S
Co=(1+r)S2+Y2-S — 2 : 2

A2 1+4r  Axr? A+r2
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Infinite-horizon lifetime budget constraint

e We can again combine all the per-period constraints into a lifetime constraint

e Solve out per-period consumption C; and take PDVs from date 0

Co=(14+7r)S+Y-5 — Co=(1+7)So+ Yo — 5
_ ST Y| S
Ci=14+nrS1+¥" -85 — T —)9{+1+r7 e

CQ Y2 _ 53

5
- Y — -
Ce={tnS+¥=5% = G =gt arg  Trp
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Infinite-horizon lifetime budget constraint

e We can again combine all the per-period constraints into a lifetime constraint
e Solve out per-period consumption C; and take PDVs from date 0

Co=01+r)So+Yo—51 — Co=(147r)So+Yo—5
S
1+r =51+ +r +r

CQ / Y2 53
~(1 Yo— Sy — — -
Co={1+1)S +12 =55 A+r2  For  @+rE @+r?

01:(1+T‘)Sl+§/1*52 —

oo Cf B
2t Ot )SHZ(H )t

t=0 t=0
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Two formulations of the infinite-horizon consumption-saving problem

1. The per-period formulation:

ma tU(Cy) st. Ci+8Si1=0+7r)S;+Y, fort=0,1,2,...
{Chsf} ;5 (Cy) t t+1 = ( )St t

2. The lifetime formulation:

‘U(C t. = (1+7)So+ P E—
S ;B (Ce) s ;(1+T)t (1+7)So ;(1+T)t
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Two formulations of the infinite-horizon consumption-saving problem

1. The per-period formulation: solve via substitution

max, Y BUC) st Ci+Sei=1+r)8+Y; fort=0,1,2,...
L

2. The lifetime formulation: solve via Lagrangian

+ t o t
I{DCE:)}( Z;B U(Cy) st Z e (1+T)So+;(1+r)t

t= —0

continuous time: solve via Hamiltonian

(Barro and Sala-i Martin, 2004)
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Solving via the Lagrangian

The Lagrangian for the lifetime formulation is

[e.9]

[e's) Ct
+r50+21+r ; o

L{C:}) Zﬁt (Ce) + A
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Solving via the Lagrangian

The Lagrangian for the lifetime formulation is

147 SO+Z 1+r _Z(l“")t

The first-order conditions w.r.t. any particular C; and Cy, 1 are

L({Ci}) Zﬁt (C) + A

oL B
0= 3q =PV -2y
0L i B 1
0= 0C 41 =5V (Gn) )\(1 + )ttt
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Solving via the Lagrangian

The Lagrangian for the lifetime formulation is

[e.9]

[e's) Ct
+r50+21+r ; T

L({Ci}) Zﬁt (C) + A

The first-order conditions w.r.t. any particular C; and Cy, 1 are

oL B
0= 3q =PV -2y
0L i B 1
0= 0C 41 =5V (Gn) )\(1 + )ttt

Solving for A and rearranging recovers the Euler equation: for t =0,1,2,...

U'(Ct) = B(1+7)U'(Ct11)

17 /48



Characterizing the solution

The solution is then the unique set of Cy, C1, (s, ... that solve

o , = G Y
U'(Cy) = B(L+ 1)U (Ciy1) Vt, ;(Hr)t —(1+T)So+§(l+r)t
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Characterizing the solution

The solution is then the unique set of Cy, C1, (s, ... that solve

U'(C) = B+ 1)U (Cor) Yt D sy = (L4 1)S0+ D e
t=0 =

With log utility, the Euler equation simplifies to Cyy+1 = B(1 + 7)C%, so

C, = BH(1 + r)tCo
Y; =
<1+r>t>/<§5>

Co = ((
— ((l—l—r)So—i—Z lfr)t> / <1i5>

(1ﬁ)<(1+ )swz(lf )>

t=0
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Taking stock

e What else should Cy and I; depend on other than current income Y;?
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Taking stock

e What else should Cy and I; depend on other than current income Y;?

e Take microfounded approach:

saving is chosen by a rational utility-maximizing rep. HH over oo periods

¥ future Y;? age/life cycle?
g Yy

? ? .
o past Y;? wealth’ So, turning back to growth. ..
¥f impatience?
o interest rates? t 2 opportunities vs. necessities

interest rates? taxes?

O uncertainty?

[0 borrowing constraints? (modern macro inc. all these and more!)
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Revisiting the Solow model




Consumption in the Solow model, revisited

Recall from last week. ..

BGP __ 7.55 a_ S 1(_!”
Y _At(k) _At<5+gA+gL>

...so should we just max out w/ s = 17
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Consumption in the Solow model, revisited

Recall from last week. ..

BGP __ 7.55 a_ S 1(_!”
Y _At(k) _At<5+gA+gL>

...so should we just max out w/ s = 17

Not if what matters for utility is consumption:

@

BGP BGP ) S 1o
c —(1-—s =(1-s8)4 | ——m
t ( )yt ( ) t <5+g,4 +gL>
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The “golden rule” to optimize steady-state consumption

c*
F 5

k, k*
golden rule capital stock

21/48



The “golden rule” to optimize steady-state consumption

c*
F 5

Let's work w/ detrended consumption:

BGP BGP

Ct _ o Yt — _o\;ss
= 1) = (1))

&=

k, k*
golden rule capital stock
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The “golden rule” to optimize steady-state consumption

c*
F 5

Let's work w/ detrended consumption:

SS CtBGP thGP SS
o = (1= = (1-9)y
= = -9t = (1-s)g

< What is that curve?

k, k*
golden rule capital stock
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The “golden rule” to optimize steady-state consumption

c*
F 5

Let's work w/ detrended consumption:

BGP BGP

y ~SS
&= = (1-s) ilt = (1-s)y

< What is that curve?

& =(1-s) ()"

All values of ¢ consistent with g; = 0

k, k*
golden rule capital stock
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The “golden rule” to optimize steady-state consumption

c*

1 Solving maxg ¢**:
agss
7* =(1—s
7= =010-s)—5
s 0y* s
1—s 0s =
s«
-5 1l—a
SGR =«

k, k*
golden rule capital stock
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The “golden rule” to optimize steady-state consumption

c*

1 Solving maxg ¢**:

P =(1-s)

p . What's the intuition?

golden rule ébpital stock
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The Solow model in discrete time

As we switch into discrete time, let's simplify: Ly =1, Ay =1Vt — K; = k; = k;
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1. aggregate production function:

yr = F(ke, 1) = ki
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The Solow model in discrete time

As we switch into discrete time, let's simplify: Ly =1, Ay =1Vt — K; = k; = I::f
1. aggregate production function:

yr = F(ke, 1) = ki

2. capital accumulation:

ki1 — ki

Al = SF(k’t, 1) — (Wft
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The Solow model in discrete time

As we switch into discrete time, let's simplify: Ly =1, Ay =1Vt — K; = k; = I::f
1. aggregate production function:

yr = F(k, 1) = kY

2. capital accumulation:
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The Solow model in discrete time

As we switch into discrete time, let's simplify: Ly =1, Ay =1Vt — K; = k; = k;
1. aggregate production function:

yr = F(k, 1) = kY

2. capital accumulation:
ktJrl = SF(th, 1) + (1 — (S)kt
but we can split that into. ..

ki1 = [F(ke, 1) — ] + (1 — 0)ky, ce = (1 — s)F(ke, 1)

kiy1—ke

A steady state is a point where ==+

=0 — kt+1:k:t — Ct41 = C¢
22 /48



(Re)introducing the c-k phase diagram

the law of motion:

k) = Flk,1) — ¢, + (1 = 8) k,

5

m Q: How can we find the points for which k,, | = k, ?
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(Re)introducing the c-k phase diagram

A . the law of motion:
: ko =Flk,1)—c,+(1 -0k

5

B\,  Q:How can we find the points for which k,,, = k, ?
— ¢, = F(k,1) =6k,  We also call this a locus

Q: What happens if, for a given k, we choose

consumption above or below the blue line?
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(Re)introducing the c-k phase diagram

For each point (k,, c,) in the diagram, we can
. compute next period’s capital stock k, _,, in
4 — line with the law of motion:

k)= Flk,1) — ¢, + (1 = 6) k,

5

B\,  Q: How can we find the points for which k,,, = k, ?

— ¢, = F(k,1) = 6k, We also call this a locus

Q: What happens if, for a given k, we choose

consumption above or below the blue line?
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For any kg, different consumption rules — different transition paths

Example 1: c Example 2:

*>0-0—>0>0—

| ] 1 bl 1 I

ky ky ky k| Ky ks




Some paths are clearly inferior to others. ..

Example 3:

Q= =Cs Moo *—0—0—0—0-+0- ( Q: Why would this be a pretty inefficient path? j

| Il Il 1 1 L

T T ™

ky ki ky kg kg ks ki
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Some paths are clearly inferior to others. ..

Example 3:

Can raise consumption everywhere by just
picking a higher consumption starting at date

/ t=11!

(_'l ...................................
[This always works if a path converges to

a limit on the right side of the diagram]

€= . =Cs i o—0—0—0—0-+0
| L 1 1 L L L

( Q: Why would this be a pretty inefficient path? j

T T L

U I T 1
/\'“ kl kz I(3 k4 kj k/ [We call this dynamic inefficiency]

25/48



Solow consumption rule — just one particular path

A

Steady state:
c*=(1-15)- F(k*,1)
s F(k*1) =6 k*

¢,=(1—s)- F(k,1)

Ad-hoc consumption rule

|
k** v 26 /48



Solow consumption rule — just one particular path

Steddy state:
c* = (1 —s)- F(k*,1)
A s F(k*,1) =6 - k*

S~

¢,=(1—s)- Fk,1)

Ad-hoc consumption rule

! 26 /48



The Ramsey-Cass-Koopmans model




Overview

e The Ramsey-Cass-Koopmans model will be our first fully modern macro model

Main idea: Want to replace the ad-hoc consumption rule of the Solow model. ..

e ...with consumption behavior from a utility-maximizing oo-horizon household

e Two approaches to set up this model
e Describe as general equilibrium
o Representative household & firm, interact thru markets [will focus on this one!]
e Describe as planning problem

e A “benevolent planner’ maximizes household utility s.t. resource constraints

Note: Both yield the same, so we say that the model is first-best efficient
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General equilibrium

o Markets "~ )
E ﬂ ! E : labor supply ﬁ
labor demand
labor market
' -. w (determines wage w,) } kﬂ[j’"ﬁ.‘;\ ﬁ
l = = | |
Firm Household
h savings
capital demand financial market
F m (determines interest rate r,) k;'?\-, b
== .
" / Partial equilibrium = one market clears . - -

General equilibrium = all markets clear simultaneously 28 /48



Household optimization problem

e Household earns wage w; and accumulates a stock of assets a; entering period ¢
e Jast class: income was denoted by Y; and savings by S,

e in general equilibrium, using w; and a; is somewhat more common
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e Jast class: income was denoted by Y; and savings by S,

e in general equilibrium, using w; and a; is somewhat more common
e Household now faces time-varying interest rate r; in period ¢

e Household then solves for its optimal consumption path {c;}:

o
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Household optimization problem

e Household earns wage w; and accumulates a stock of assets a; entering period ¢
e Jast class: income was denoted by Y; and savings by S,
e in general equilibrium, using w; and a; is somewhat more common

e Household now faces time-varying interest rate r; in period ¢

e Household then solves for its optimal consumption path {c;}:

o
I?ai{ ZﬁtU(ct) st. cotap1=04r)a+w fort=0,1,2,...
I =0
which is characterized by the Euler equation

U/(Ct) :ﬁ(1+Tt+1)U/(Ct+1) fOI’t:O,l,Q,...

and budget feasibility (recall from last class!)
29/48



Firm optimization problem

e In a general equilibrium model, we also need to describe:
e what the household saves in. ..

e ...and who pays the wage

e Suppose there is a representative firm that, each period:

e Rents capital k; from the household at rate R; = r; + 0

e compensate household for opportunity cost () and depreciation (&)
e note: what we called r in the Solow model would here be R,

e Employs the household at wage w;

30/48



Firm optimization problem

e In a general equilibrium model, we also need to describe:
e what the household saves in. ..

e ...and who pays the wage

e Suppose there is a representative firm that, each period:

e Rents capital k; from the household at rate R; = r; + 0

e compensate household for opportunity cost () and depreciation (&)
e note: what we called r in the Solow model would here be R,

e Employs the household at wage w;

capital
expenditures

—
max F(kt, Et) —(Tt + 5)k’t —wtﬁt
kt7€t — N——
wage
payments

revenue

30/48



Firm optimization problem

e In a general equilibrium model, we also need to describe:
e what the household saves in. ..

e ...and who pays the wage

e Suppose there is a representative firm that, each period:

e Rents capital k; from the household at rate R; = r; + 0

e compensate household for opportunity cost () and depreciation (&)
e note: what we called r in the Solow model would here be R,

e Employs the household at wage w;

capital oF(k &
. ezpendlt;r)e; g (akftt) = F (k¢ by) =714+ 0
max tstt) —(Tt +0)ky —wiby OF (K¢, £
K bt m Rl (827 ! = Fy(ke, b)) = wy
payments t
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Defining equilibrium

A competitive equilibrium consists of quantities {c¢;, as, k¢, ¢;} and prices {r;, w;} s.t.
1. The household optimally picks {c;, a;} given {ry, w;}
U'ct) = B(1+ 1)U (ctr1), et +apyr = (L+ri)ag +wy fort=0,1,2,...
2. The firm optimally picks {k:, ¢} given {ry, w;}
Fi(ke b)) = re + 0, Fyp(ke, ) = wy

3. The asset market clears: k; = a;
4. The labor market clears: ¢; =1

5. The resource constraint holds: (check: already implied by #1-4)

k‘t+1 = F(k/‘t, 1) — C¢ + (1 - 5)]{315
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Ramsey-Cass-Koopmans vs. Solow

Both have same resource constraint. . . ... but different consumption rules:

kt+1 = F(k/‘t, 1) —ct + (1 — 5)kt G = (1 — S)F(k‘t, 1)
VS.

U'(ct) = B[l + 7441]U" (cs41)
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Ramsey-Cass-Koopmans vs. Solow

Both have same resource constraint. . . ... but different consumption rules:

kt+1 = F(k/‘t, 1) —ct + (1 — 5)kt G = (1 — S)F(k‘t, 1)
VS.

U'(ct) = B[+ Fi(kty1,1) — 0]U (ct11)

How can we solve this system? Just like Solow!

1. Characterize the steady state

2. Analyze transitions using c-k phase diagram
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A steady state is a pair {c*, k*} at which optimally. ..
o =c1 =" — U'(c®) = B[1+ Fy (k,1) — 6] U'(c®)
1
F,(k»®,1)=——1+96
k (>,1) 3 +

ke = ki =K% — kE® =F(k*,1) — >+ (1 — 0)k™
c® = F(k®,1) — k>

Can be shown: optimal {¢;, k:} always converges to {c**, k*}

(Check: What is the relationship between 3 and r°°7)
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The “modified golden rule” to optimize the consumption path

Recall the golden rule (s°R = a): (Cobb-Douglas, Ly =1, A, = 1)

1

S 1-a « 1%

LSS _ — ]{IGR _ (7) o
Solow <5+9A +9L> 5

But, from the Kaldor facts: s ~ i < % ~ a — should we be saving more?
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The “modified golden rule” to optimize the consumption path

Recall the golden rule (s°R = a): (Cobb-Douglas, Ly =1, A, = 1)

1
s sy a\
Ess _ N kGR _ (7) c
Solow <5+9A +9L> 5
But, from the Kaldor facts: s ~ i < % ~ a — should we be saving more?

The modified golden rule says not necessarily:

1

1 1-a
B —

The golden rule didn’t account for impatience!
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What happens away from steady state?

Substitute the resource constraint into the Euler equation

U'(et) =B |1+ Fp(F(ke, 1) —ce + (1 = )k, 1) = | U'(cer1)

k¢41: resource constraint
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What happens away from steady state?

Substitute the resource constraint into the Euler equation

U'(et) =B |1+ Fp(F(ke, 1) —ce + (1 = )k, 1) = | U'(cer1)

k¢41: resource constraint

Cannot explicitly link consumption across periods anymore—depends on k; (thru r)!
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What happens away from steady state?

Substitute the resource constraint into the Euler equation

U'(et) =B |1+ Fp(F(ke, 1) —ce + (1 = )k, 1) = | U'(cer1)

k¢41: resource constraint

Cannot explicitly link consumption across periods anymore—depends on k; (thru r)!

With Cobb-Douglas production and log utility. ..

cir1 =B [L+alkf —c+ (1—0)k)* ' — 6]
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From any given kg, how do we transition to steady state?

A\ 4
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From any given kg, how do we transition to steady state?

C{
A
Start1.ng he{'e w?uld not /-_\‘
be optimal since it would
. +-—9
reduce the capital stock,
moving further away
from the steady state!
°
i >
ko k
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From any given kg, how do we transition to steady state?

Starting here would not o
be optimal since it would
reduce the capital stock,
moving further away
from the steady state!

Optimal consumption rule

ac,
Can show — > 0 ! How?
oKy Cr1

Exact speed with which we
converge to the steady state is
determined by the Euler equation
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From any given kg, how do we transition to steady state?

Starting here would not o
be optimal since it would
reduce the capital stock,
moving further away
from the steady state!

Steady state:
c* = F(k*,1) — 6k*
\ L R D=7 —146

Optimal consumption rule

"
e

—
v

Exact spéed with which we
converge to the steady state is
determined by the Euler equation

> 0 ! How?

Q: Is the steady-state equal
to the Golden Rule? Why?

k*
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The Brock-Mirman special case

Here's a special case we can solve in closed-form: (Problem Set #3)

e Cobb-Douglas production function: F'(k¢, 1) = k§*
e Log utility: U(ct) = In(cy)

e Full depreciation: 6 =1 (pretty unrealistics unless we use long time periods)

Then the optimal consumption rule is given by. ..
¢ = (1— aB)kg

...which looks exactly like Solow just with endogenous savings rate s = a3
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Applications

Let's study two applications of the Ramsey-Cass-Koopmans model:
1. Compare two economies with different discount factors
e idea: Protestant culture should lead to greater patience
e idea: Aging economies should look like more patient economies
2. Introduce capital taxes

e idea: Economies with extractive institutions should end up saving less

38/48



Application 1: Differences in discount factors

Optimal consumption rule
with lower patience [}

Optimal consumption rule

(" Steady state and )
with greater patience [}

Fk*1)=p"'-1+6

/

Greater patience implies
a smaller RHS, and thus
a smaller MPK, which

means a greater k* J

— leads to greater capital
accumulation and GDP

oc,
Can show — < 0 !How?

](!’El+]
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Application 2: Introduce capital taxes

e Think of capital taxes as reducing the return on saving in the Euler equation

U'(ce) = Bl +re01(1 — 7)]U" (1) = (1 —7) [Fr (k%,1) = 0] = ; -1

e capital taxes (7 7T) have the same effect as less patience (3 |)

e reduce capital accumulation and steady-state GDP per capita
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The neoclassical growth model (NGM)

F(Kt, AtLt) = K?(AtLt)l_a, Kt+1 = F(I(t, AtLt) — Ci + (1 — (S)Kt
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The neoclassical growth model (NGM)

F(Ky, ALy) = K (ALy)' ™, K1 = F(Ky, AtLy) — Cy + (1 — 0) Ky

... with exogenous savings (the Solow model)

e ad-hoc consumption rule — savings depend on current output y¢ only

... with endogenous savings (the Ramsey-Cass-Koopmans model)

e optimal consumption path — savings depend on {wy, ¢, ¢ }, 3, Ko, - -« -

e can reincorporate population (gr) and productivity (ga) growth
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How does the NGM answer our three organizing questions?

1. Why are we so rich and they so poor?
2. What is the engine of economic growth?

3. How do “growth miracles” happen?
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How does the NGM answer our three organizing questions?

1. Why are we so rich and they so poor?
— differences in s (3, 7,...), g, Ao

2. What is the engine of economic growth?
— ga, but exogenous!

3. How do “growth miracles” happen?

— transitional growth (faster if farther from BGP)

Next week: How do these fit the data?
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Bonus: A better welfare metric?

e so far, we've compared economies i just by GDP per capita y;; ...

“Every year, you get a check for $y;; (PPP-adjusted)..."
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Bonus: A better welfare metric?

e so far, we've compared economies i just by GDP per capita y;; ...
“Every year, you get a check for $y;; (PPP-adjusted)..."

e ...but this week, we've shown how to optimize consumption paths c;;
“Every year, you choose to consume $c;; (PPP-adjusted). .. "

e begs the question: can we come up w/ a better welfare metric than just y;:?

say, one that incorporates. . .

e optimal consumption-savings decisions?
optimal labor-leisure decisions?
mortality?

inequality?
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Consumption-equivalent welfare

What proportion of consumption in the United States, given the US values of
leisure, mortality, and inequality, would deliver the same expected utility as
the values in country i?
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We define consumption-equivalent welfare \; as the factor by which consumption in
country ¢ must be multiplied to yield the same expected lifetime utility as in the US:

Uys(Ai) = Ui(1)
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Consumption-equivalent welfare

What proportion of consumption in the United States, given the US values of
leisure, mortality, and inequality, would deliver the same expected utility as
the values in country i?

We define consumption-equivalent welfare \; as the factor by which consumption in
country ¢ must be multiplied to yield the same expected lifetime utility as in the US:

Uys(Ai) = Ui(1)

Being a random person in country i (say, France) = Being a random person in
the US with your consumption scaled by \;.
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A concrete example

Suppose everyone in the world has the same preferences:
U(e,f) =u+In(c) +v(f)

with, for each country 4, no discounting (5 = 1), no consumption growth (g. = 0),
constant leisure (¢;), known life expectancy (e;), and consumption distributed

C

LogNormal(c;, of) across people in i.
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¢) across people in i. Then expected lifetime utility in i is. ..
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A concrete example

Suppose everyone in the world has the same preferences:

Ule,l) = u+1In(c) +v(l)

with, for each country 4, no discounting (5 = 1), no consumption growth (g. = 0),

constant leisure (¢;), known life expectancy (e;), and consumption distributed

LogNormal(c;, of

) across people in 7. Then expected lifetime utility in i is. ..

Ui =e;[u+In(¢) +v(¢) — 0.507]

...and the (log) consumption-equivalent welfare in country i relative to the US is

111)\,' =

€; — €eus [

a+ In(c;) + v(4;) — 0.507]
€us

+ Inc¢; — Ineys
+v(€;) — v(lys)
—0.5(05 — aijs)

Life expectancy)

Consumption)
Leisure)

(
(
(
(

Inequality) 45,45



GDP per capita is highly informative. . .

Panel A. Welfare and income are highly correlated at 0.96
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... but still masks important variation

Panel B. But this masks substantial variation in the ratio of A to GDP per capita.
The mean absolute deviation from unity is about 27%
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... but still masks important variation
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FIGURE 4. LIFE EXPECTANCY

Note: Life expectancy at birth in each country is measured as the sum over all ages of the probability of surviving
to each age, using life tables from the World Health Organization. 47/48



... but still masks important variation
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FIGURE 2. ANNUAL HOURS WORKED ACROSS COUNTRIES

Notes: The measure shown here of annual hours worked per capita is computed from the household surveys noted
in Table 1, using survey-specific sampling weights and US survival rates across ages as in equation (16), with no
time discounting. 47 /48



... but still masks important variation
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... but still masks important variation
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Notes: The standard deviation of log consumption within each economy is measured from the household surveys
listed in Table 1. We use survey-specific sampling weights and US survival rates across ages using an analog of
equation (17), with no discounting or growth. 47/48



That was for levels, but it’s likewise for growth
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That was for levels, but it’s likewise for growth

Panel A. The correlation between welfare growth and income growth is 0.97
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That was for levels, but it’s likewise for growth

Panel B. The median absolute value of the difference between welfare
and income growth is 0.95 percentage points
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