Economics 332 – Theory of Income III Fernando Alvarez Spring 2021 Midterm 2

Instructions

This exam consists of two parts. You have 50 minutes to complete this exam and another 20 minutes to upload the exam to Canvas.

Ramsey Problem with No Capital (100 points)

Consider a deterministic economy where all agents have utility

$$\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, n_{t}\right)$$

over consumption and labor sequences. Assume that U is increasing in c, decreasing in n, and strictly concave in (c, n). Feasibility is given by

$$c_t + g_t = A_t n_t$$

where g_t stands for government purchases. Assume that the government taxes labor at rate $\{\tau_t\}$ to finance the stream of government purchases $\{g_t\}$.

1. Write down the Arrow-Debreu budget constraint of the household. Use p_t for the AD price of consumption at t in units of date-0 goods, and w_t for time-t before-tax wages in term of consumption at date t. Use τ_t for the proportional tax on labor income. [Solution should be 1 equation. 10 points.]

Solution:

$$\sum_{t=0}^{\infty} p_t c_t = \sum_{t=0}^{\infty} p_t \left(1 - \tau_t\right) n_t w_t$$

2. Write down the first-order condition for c_t and n_t for the household problem. Write down the first-order condition for the firm problem. [Solution should be 3 equations. 10 points.]

Solution:

$$\beta^{t} U_{c} (c_{t}, n_{t}) = \lambda p_{t}$$
$$-\beta^{t} U_{n} (c_{t}, n_{t}) = \lambda p_{t} (1 - \tau_{t}) w_{t}$$
$$w_{t} = A_{t}$$

3. Derive the implementability condition for this economy. [Solution should be 1 equation. 10 points.]

Solution:

$$0 = \sum_{t=0}^{\infty} \beta^{t} \left(U_{c} \left(c_{t}, n_{t} \right) c_{t} + U_{n} \left(c_{t}, n_{t} \right) n_{t} \right)$$

4. Set up the Ramsey problem. [Solution should be a maximization problem. 10 points.]

Solution:

$$\begin{aligned} \max_{\substack{(c_t, n_t)_{t=0}^{\infty} \\ \text{s.t.}}} & \sum_{t=0}^{\infty} \beta^t U\left(c_t, n_t\right) \\ \text{s.t.} & \sum_t \beta^t \left[c_t U_c\left(c_t, n_t\right) + n_t U_n\left(c_t, n_t\right)\right] = 0 \\ & c_t + g_t = A_t n_t \quad \forall t \end{aligned}$$

5. What are the first order conditions with respect to c_t and n_t ? [Solution should be 2 equations. 10 points.]

Solution:

$$U_{ct} + \lambda \left[U_{ct} + c_t U_{cct} + n_t U_{cnt} \right] = \mu_t$$
$$U_{nt} + \lambda \left[U_{nt} + c_t U_{cnt} + n_t U_{nnt} \right] = -A_t \mu_t$$

6. For the rest of the problem, let utility take the form $U(c,n) = \log(c) - \alpha n$ where $\alpha > 0$. Solve for the Lagrange multiplier λ as a function of the sequence $\{g_t\}$. [Solution should be 1 equation. Hint: combine the implementability condition, first order conditions, and feasibility constraint. 20 points.]

Solution: We can first simplify the implementability condition using the functional form of utility. We have $U_c c = 1$ and $U_n n = -\alpha n$. Implementability is therefore

$$0 = \sum_{t=0}^{\infty} \beta^t \left(1 - \alpha n_t \right)$$

and the first-order conditions to the Ramsey problem are

$$\frac{1}{c_t} = \mu_t$$
$$-\alpha + \lambda[-\alpha] = -A_t \mu_t$$

which we can combine together to get

$$c_t = \frac{A_t}{\alpha(1+\lambda)}.\tag{1}$$

Substitute the feasibility constraint into the implementability constraint, then substitute (1) in for c_t and simplify:

$$\begin{split} 0 &= \sum_{t=0}^{\infty} \beta^t \left(1 - \alpha \frac{c_t + g_t}{A_t} \right) \\ &= \sum_{t=0}^{\infty} \beta^t \left(1 - \alpha \frac{\frac{A_t}{\alpha(1+\lambda)} + g_t}{A_t} \right) \\ &= \sum_{t=0}^{\infty} \beta^t \left(1 - \frac{1}{1+\lambda} - \alpha \frac{g_t}{A_t} \right). \end{split}$$

Now solve for λ :

$$0 = \sum_{t=0}^{\infty} \beta^t \left(1 - \frac{1}{1+\lambda} - \alpha \frac{g_t}{A_t} \right)$$
$$\left(1 - \frac{1}{1+\lambda} \right) \frac{1}{1-\beta} = \alpha \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t}$$
$$\frac{1}{1+\lambda} = 1 - \alpha (1-\beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t}$$
$$\lambda = \left(1 - \alpha (1-\beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t} \right)^{-1} - 1.$$

7. Compare the solution for c_t in the Ramsey problem with the solution for c_t in the first best. If there is a difference between the two, explain what causes it. [Solution should be 2 equations and 1 sentence. 10 points.]

Solution: Solving for c_t , we have

$$c_t = \frac{A_t}{\alpha(\lambda+1)} = \frac{A_t}{\alpha} \left(1 - \alpha(1-\beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t} \right)$$

The first best solution is

$$c_t = \frac{1}{\alpha}$$

8. How do the level of taxes τ_t , λ and the level consumption c_t and labor n_t depend on the present value of g, where present value is taken with respect to beta? Are taxes constant or vary over time? [Solution should be 4 equation and 2 sentences. 10 points.]

Solution: We have already derived two of these equations:

$$c_t = \frac{A_t}{\alpha(\lambda+1)} = \frac{A_t}{\alpha} \left(1 - \alpha(1-\beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t} \right)$$
$$\lambda = \left(1 - \alpha(1-\beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t} \right)^{-1} - 1$$

Then labor is given by the market clearing condition:

$$n_t = \frac{c_t + g_t}{A_t}$$

and taxes can be backed out from household first-order conditions:

$$\tau = 1 - \frac{\alpha c_t}{A_t} = \alpha (1 - \beta) \sum_{t=0}^{\infty} \beta^t \frac{g_t}{A_t}$$

where we can substitute in the equation for c_t above.

9. Is the Ramsey problem, under the current assumptions, a convex maximization problem, i.e. whether the first order conditions are sufficient for a solution? Explain your reasoning. [Solution should be 1 sentence. 10 points.]

Solution: Yes, since implementability is a linear constraint.

Aggregation

Consider a pure endowment economy where preferences are indexed by a vector $\theta^i = \{\theta^i_\ell\}_{\ell=1}^m$ and a scalar σ^i as follows:

$$u^{i}(x_{1}, x_{2}, \dots, x_{m}) = \left[\sum_{\ell=1}^{m} \left(x_{\ell}^{i} - \theta_{\ell}^{i}\right)^{\frac{\sigma_{i}-1}{\sigma_{i}}}\right]^{\frac{\sigma_{i}}{\sigma_{i}-1}}$$

1. Write down the social planner's problem. Use λ_i to denote the weight on a household of type *i* and \bar{e}_{ℓ} to denote the total endowment of commodity ℓ . [Solution should be a set of choice variables, an objective, and its constraint(s).]

Solution:

$$\max_{x^i \in X_i} \sum_i \lambda_i \left[\sum_{\ell=1}^m \left(x_\ell^i - \theta_\ell^i \right)^{\frac{\sigma_i - 1}{\sigma_i}} \right]^{\frac{\sigma_i}{\sigma_i - 1}} \quad \text{s.t.} \quad \sum_i x_\ell^i \le \bar{e}_\ell \ \forall \ell.$$

2. Write down the planner's FOC for x_{ℓ}^i . Use γ_{ℓ} to denote the Lagrange multiplier on the feasibility constraint for commodity ℓ . [Solution should be 1 equation.]

Solution:

$$\lambda_i (x_\ell^i - \theta_\ell^i)^{-\frac{1}{\sigma_i}} \left[\sum_{\ell=1}^m \left(x_\ell^i - \theta_\ell^i \right)^{\frac{\sigma_i - 1}{\sigma_i}} \right]^{\frac{1}{\sigma_i - 1}} = \gamma_\ell$$

or, equivalently,

$$(x_{\ell}^{i} - \theta_{\ell}^{i}) = \lambda_{i}^{\sigma_{i}} \gamma_{\ell}^{-\sigma_{i}} \left[\sum_{\ell=1}^{m} \left(x_{\ell}^{i} - \theta_{\ell}^{i} \right)^{\frac{\sigma_{i}-1}{\sigma_{i}}} \right]^{\frac{\sigma_{i}}{\sigma_{i}-1}} = \lambda_{i}^{\sigma_{i}} \gamma_{\ell}^{-\sigma_{i}} u^{i}.$$

$$(2)$$

3. Define $\bar{\theta}_{\ell} \equiv \sum_{i} \theta_{\ell}^{i}$. Using the FOC for x_{ℓ}^{i} and the feasibility constraint for commodity ℓ , can you write γ_{ℓ} as a function of \bar{e}_{ℓ} and $\bar{\theta}_{\ell}$? If so, do it. If not, what assumption on $\{\sigma_{i}\}$ would allow you to do so? Use that assumption in all that follows. [Solution should be "yes" with 1 equation or "no" with 1 assumption and 1 equation.]

Solution: Sum (2) over *i*:

$$\sum_{i} u_{i} \lambda_{i}^{\sigma_{i}} \gamma_{\ell}^{-\sigma_{i}} = \sum_{i} (x_{\ell}^{i} - \theta_{\ell}^{i})$$
$$= \bar{e}_{\ell} - \theta_{\ell}.$$

Note, though, that we can't factor out $\gamma_{\ell}^{-\sigma_i}$ unless $\sigma_i = \sigma$ for all *i*. Under this additional assumption,

$$\gamma_{\ell}^{-\sigma} \sum_{i} u_{i} \lambda_{i}^{\sigma} = \bar{e}_{\ell} - \theta_{\ell}$$
$$\gamma_{\ell} = (\bar{e}_{\ell} - \theta_{\ell})^{-\frac{1}{\sigma}} \left(\sum_{i} u_{i} \lambda_{i}^{\sigma} \right)^{\frac{1}{\sigma}}.$$

4. Derive an expression for γ_{ℓ}/γ_k . Does it depend on $\{\lambda_i\}$? [Solution should be 1 equation.]

Solution: No, it does not depend on the weights:

$$\frac{\gamma_{\ell}}{\gamma_{k}} = \left(\frac{\bar{e}_{\ell} - \theta_{\ell}}{\bar{e}_{k} - \theta_{k}}\right)^{-\frac{1}{\sigma}} \left(\frac{\sum_{i} u_{i} \lambda_{i}^{\sigma}}{\sum_{i} u_{i} \lambda_{i}^{\sigma}}\right)^{\frac{1}{\sigma}} \\ = \left(\frac{\bar{e}_{\ell} - \theta_{\ell}}{\bar{e}_{k} - \theta_{k}}\right)^{-\frac{1}{\sigma}}.$$

5. In the competitive equilibrium version of this model, do relative prices depend on the distribution of wealth? Do we have aggregation? [Solution should be no more than 3 sentences.]

Solution: Recall that relative prices in the competitive equilibrium are such that $p_{\ell}/p_k = \gamma_{\ell}/\gamma_k$. Since γ_{ℓ}/γ_k is independent of $\{\lambda_i\}$, the relative prices are as well. We have aggregation.