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Abstract

Cities have long been thought to drive economic growth. Despite this, analyses
of spatial policies have largely ignored the effects of such policies on growth.
In this paper, I develop a spatial endogenous growth model in which hetero-
geneous agents make forward-looking migration decisions and human capital
investments over the life cycle. Local externalities in the human capital invest-
ment technology drive both agglomeration and growth. I show that, along a
balanced growth path, the growth rate depends on the spatial distribution of
human capital, making it sensitive to spatial policies. I calibrate the model to
data on U.S. metropolitan areas and show that it can rationalize the faster wage
growth of workers in big cities, as well as other key patterns in life-cycle wage
profiles, migration decisions, and city characteristics. Because workers accumu-
late human capital at different rates depending on where they live, the model
provides an environment in which spatial policy can not just attract skilled
workers, but produce them, too. I find that policies that further concentrate
skilled workers in large cities are growth-enhancing.
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1 Introduction

That cities drive economic growth is a refrain often repeated since Jacobs (1969)
and even Marshall (1890). Ideas flow freely through city streets, the story goes, and
pass all the more rapidly between people the denser is the city. It is these ideas—
embodied as human capital in the workers who learn, use, and share them—that
drive economic growth (Lucas, 1988; Glaeser, 2011).

Recent panel estimates suggest that workers do indeed learn more in big cities
and that they anticipate the ensuing wage gains when making migration decisions
over the life cycle.! But models of idea-driven growth have yet to incorporate this
evidence, instead restricting attention to settings with no explicit space whatso-
ever.” Accordingly, it remains unclear how the allocation of workers across space
contributes to determining the pace of aggregate growth. At the same time, work on
optimal spatial policy has been hamstrung by this gap, unable to weigh the potential
growth effects of policies that shift workers around the urban landscape.

In this paper, I address these concerns by developing a quantitative spatial
endogenous growth model that can be used to evaluate spatial policies. In so doing,
I make three contributions. First, my model demonstrates a mechanism through
which the allocation of human capital across space determines the pace of aggregate
growth. Second, in quantifying the model, I jointly rationalize a host of empirical
facts about U.S. cities in the cross-section and U.S. workers over the life cycle. Third,
with the quantified model in hand, I solve for the outcome of a commonly-proposed
place-based policy.

In the model, a finite number of cities are populated by heterogeneous workers
who make forward-looking migration decisions and human capital investments over
the life cycle. At the root of the model is a local externality in the investment process.
Being near the human capital of her neighbors quickens a worker’s accumulation
of her own. As such, she is attracted to large, skilled cities for the permanent
productivity boost they afford her.? It is this desire, shared to varying degrees by
all workers, that draws individuals into larger cities despite their higher land rents; it
is this permanent boost, experienced to varying degrees by all workers, that fosters

!On learning in big cities, De la Roca and Puga (2017) show that wage growth is higher in bigger
cities, these wage gains persist even after migration, and the wage gains are higher for workers with
higher initial ability. Their results are discussed in more detail in Section 3. See also Glaeser and
Maré (2001); Baum-Snow and Pavan (2012); Wang (2016); Carlsen, Rattsg, and Stokke (2016).
On forward-looking migration decisions, first see Sjaastad (1962), then Gould (2007), Kennan and
Walker (2011), and Bilal and Rossi-Hansberg (2021).

2See, for example, Lucas (2009), Lucas and Moll (2014), Gabriel and Lucas (2019), and Caicedo,
Lucas, and Rossi-Hansberg (2019), all of which consider workers to be the relevant economic agents.
A related literature following Luttmer (2012) and Perla and Tonetti (2014) that considers firms to
be the relevant agents has incorporated space—but not location choice—through international trade
(Alvarez, Buera, and Lucas, 2014; Buera and Oberfield, 2020; Perla, Tonetti, and Waugh, 2021).

3 As Glaeser (1999) puts it, cities are “forges of human capital” and “intellectual furnaces where
new ideas are formed.”



aggregate growth.

The state of the economy at any moment is summarized by the distribution of
human capital across locations and cohorts. An individual worker’s migration and
investment decisions depend on this distribution because the mass and composition
of other workers in each city determine her own returns to living there. Workers’
migration and investment decisions in turn determine how this distribution evolves.
Accordingly, one of the equilibrium conditions is that workers solve a Hamilton-
Jacobi-Bellman equation, taking the human capital distribution as given. Another
is that the distribution evolves according to a Kolmogorov forward equation given
the decision rules of individual workers.

I focus on a particular class of solutions to these equations, namely balanced
growth paths (BGPs), along which aggregate production grows at a constant rate and
the spatial distribution of relative human capital levels remains stationary. As a con-
sequence of this stationarity, city sizes are constant along a BGP—Detroit does not
deteriorate, New York does not bounce back, the Sunbelt does not boom. Instead,
differences across cities persist, with bigger cities typically being more expensive,
more productive, and more skilled. Nevertheless, all cities experience shared output
growth as workers migrate through the urban system while accumulating human
capital over the life cycle.® So although the restriction to BGPs precludes studying
the growth of individual cities, it proves to be a tractable way to study growth
because of cities.

My main theoretical result is an expression for the aggregate growth rate along a
BGP. The growth rate is pinned down endogenously as a function of the entire human
capital distribution across space. In particular, I show that it can be expressed as the
weighted average of the returns to investment in human capital, with more weight
given to investments made in larger, more-skilled locations. The key here is that, in
this economy, all productive capacity—both raw labor and knowledge—is embodied
in workers.” Workers invest in their own knowledge by combining their labor and
what they know with the knowledge of those around them. Whether the knowledge
they create is wholly new to the economy or simply new to them is immaterial. What
matters is that, contrary to many discussions of human capital, their knowledge is
only partially rival.® It is rival to the extent that a worker cannot clone her raw

4 Admittedly, the same mechanism that determines the pace of aggregate growth in this model—
namely, local knowledge externalities—may play a key role in what Moretti (2013a) calls the Great
Divergence, wherein average wages in cities with larger endowments of skilled labor have pulled
away from those in cities with smaller endowments since the early 1980s as technical change and
globalization have pressed upon the U.S. economy (see also Glaeser and Saiz, 2004; Berry and
Glaeser, 2005; Giannone, 2019). In this paper, however, I take the stance that these secular trends
are sufficiently separable from the endogenous dynamics I am modeling.

5As in Caicedo, Lucas, and Rossi-Hansberg (2019): “all knowledge in the economy is held by
the individual people who comprise it: there is no abstract technology hovering above them in the
ether.”

5See, for example, Romer (1990, §2), who compares the nonrivalry of a design with the rivalry
of the ability to add, and Jones (2005, §1).



labor—what one could call the “one brain, one body” constraint—but it is nonrival
to the extent that it spills over into the learning process of her neighbors. Notice
the restriction to her neighbors: when every idea must be in somebody’s brain, it
matters where those brains are.

I solve for a BGP numerically by adapting an algorithm from Achdou et al.
(2022). In so doing, I address what has been called the “hard problem” of regional
economics, which asks how to solve models in which growth and agglomeration
are outcomes of a joint process (Breinlich, Ottaviano, and Temple, 2014, p.685).
This problem has been hard because it is high-dimensional: to make choices today,
(heterogeneous) agents must understand the distribution of economic activity over
space and time, and those choices in turn determine how the distribution behaves
(Desmet and Rossi-Hansberg, 2014, pp.2-3). The key to my solution is that my
equilibrium is a mean field game (MFG), a type of differential game first formulated
by Lasry and Lions (2007). Mean field games are now the subject of a growing
mathematical literature discussing their properties and numerical schemes to solve
them, of which the algorithm from Achdou et al. (2022) is one example.”

I quantify the model using recent data on 378 U.S. metropolitan areas in three
steps. First, I back out measures of migration frictions from five years of observed
flows between cities that are cross-tabulated by age group in the American Com-
munity Survey. Second, I calibrate the parameters governing the human capital
investment sub-problem—which nests the canonical Ben-Porath (1967) model—to
values that have been shown to rationalize key patterns in life-cycle wage profiles
and the U.S. earnings distribution. Finally, I estimate the remaining parameters
using a minimum distance estimator to best fit Duranton and Puga’s (2022) esti-
mates of workers’ returns to experience in big cities, in addition to observed city
employment and total wage bills.

The quantified model can match its aggregate targets exactly and implies city
fundamentals that correlate well with observed features of those places. Despite
solving for the spatial distribution of human capital nonparametrically, the quanti-
fied model generates reasonable marginal distributions of skill and age within each
city. This is so in part because the model also does well in rationalizing observed
patterns in human capital investments and migration over the life cycle. In particu-
lar, consistent with recent evidence, earnings growth is higher in big cities, and this
boost in earnings persists even after migration to a smaller city, because workers
accumulate human capital more quickly in bigger places.® This dynamic component

"To date, Achdou et al.’s (2022) algorithm has been used mostly for consumption-savings prob-
lems with incomplete markets, where the continuous choice variable is household wealth. Lucas and
Moll (2014) used an early version of this algorithm to solve a model with balanced growth but with
only one location. A few contemporaneous papers have used the algorithm in spatial models. The
closest to the present paper is Martellini (2021), which investigates potential causes of the urban
wage premium in a stationary equilibrium. See also Bilal (2023) and Greaney (2020).

8See especially Claeser and Maré (2001), Baum-Snow and Pavan (2012), and Duranton and
Puga (2022) who study U.S. workers.



to the earnings premium is anticipated by young workers, who migrate dispropor-
tionately to bigger and more-skilled cities in order to increase the returns to their
time spent learning.

As an application of my quantitative framework, I consider a counterfactual
in which I relax land use restrictions in the “brain hubs” of New York and San
Francisco to the level of the median city, thereby making it cheaper for those two
cities—already large and productive—to expand. I find that, along the new balanced
growth path, both cities are larger and more skilled, with New York especially so.
This is not primarily the result of skill-biased migration, as if the brain hubs simply
syphoned off skilled workers from other cities. Instead, the rate of human capital
accumulation in both cities increases, meaning that the spatial policy helps produce
more skilled workers. Ultimately, I find that the aggregate growth rate for the entire
economy increases by 13 basis points in response to the policy.

Related literature

The canonical paper from which this paper develops is Lucas (1988), though the
model in its mechanics is actually closer to that in Uzawa (1965). In both papers,
growth is driven by the costly accumulation of human capital by an infinitely-lived
representative individual. Lucas (1988, §6) observes that this mechanism may un-
dergird the power of cities argued for by Jacobs (1969), but he does not model
it explicitly.” In his later work, Lucas further developed his observation by mod-
eling the accumulation of human capital through meetings between heterogeneous
individuals but, crucially, he continued to abstract from the space in which those
meetings happen and by which they are circumscribed.'’ By contrast, this paper
models cities explicitly while incorporating skill heterogeneity and adding life-cycle
dynamics that are critical for rationalizing evidence from worker panels.

Others have embedded Lucas’s (1988) endogenous growth model in an urban
system, most notably Black and Henderson (1999).'" Their model is highly stylized:
there are two types of perfectly-specialized cities, all populated by interchangeable
members of a household who are allocated to locations by a patriarch. Such bones

94Tt seems to me that the ‘force’ we need to postulate to account for the central role of cities in
economic life is of exactly the same character as the ‘external human capital’ I have postulated as
a force to account for certain features of aggregative development. ... What can people be paying
Manhattan or downtown Chicago rents for, if not for being near other people [in order to learn
from them]?” (pp.38-39).

198ee Lucas (2009), Gabriel and Lucas (2019) and Caicedo, Lucas, and Rossi-Hansberg (2019),
which include cohort structures, and Lucas and Moll (2014), which includes costly on-the-job learn-
ing.

"See also Baton and Eckstein (1997), whose framework is closer in spirit to mine but whose
specification of endogenous growth is incomplete, and Rossi-Hansberg and Wright (2007), who
further develop Black and Henderson’s approach in a stochastic environment with many industries.
Using an augmented version of Black and Henderson’s model, Davis, Fisher, and Whited (2014)
estimate that agglomeration, by itself, raises per capita consumption growth by 10.2%.



are unfit to carry the flesh of facts from worker-level studies of migration and hu-
man capital investment.'? Moreover, in their model agglomeration and growth occur
without interacting: the agglomeration spillovers are wholly static, while the learn-
ing technology has no local effects. This is inconsistent with recent evidence that
my model can rationalize (Glaeser and Maré, 2001; Baum-Snow and Pavan, 2012;
Wang, 2016; De la Roca and Puga, 2017).

Still others have developed static models in which local knowledge spillovers
among heterogeneous workers beget agglomeration.'® Glaeser (1999) considers one
city and its hinterland, wherein city residents are more likely to become skilled.'*
His model predicts that younger, skilled individuals will sort disproportionately into
the city because they value the learning that the city provides. Davis and Dingel
(2019) embed a similar mechanism into a system-of-cities model, which they use
to rationalize the higher nominal wages, housing prices, productivity, and average
skill level observed in larger U.S. cities. My model matches the same facts, but
it also rationalizes observed patterns of life-cycle migration and human capital in-
vestments over time. Moreover, because my model is dynamic, it can trace out the
effects of local knowledge spillovers on long-run growth, not just cross-sectional city
characteristics.

Work on spatial policy has suffered from the same limitation. To conclude
their review of place-based policies, Glaeser and Gottlieb (2008, p.215) advised
that “[lJocal policies that either attract or produce skilled people seem likely to
offer the best chance of improving the fortunes of a troubled urban area.” With
static models, attention has been paid only to policies that attract (Gaubert, 2018;
Hsieh and Moretti, 2019; Fajgelbaum and Gaubert, 2020; Rossi-Hansberg, Sarte,
and Schwartzman, 2021). This paper studies how such policies might also affect
the production of skilled agents.'® In principle, policies that attract human capital
to cities where it might be best employed today are not necessarily the same as
those that would produce the most human capital in the long run, especially when
life-cycle dynamics are considered. The framework I develop allows policymakers to
take this into consideration.

The quantitative model introduced in Section 2 contributes to a burgeoning
literature on dynamic spatial models.'® Because dynamic spatial models can be

12Compare Klette and Kortum (2004), who use “[f]irm-level studies of research and development,
productivity, patenting, and firm growth” to “add flesh to [the] bones” of Schumpeterian growth
theory.

13Behrens and Robert-Nicoud (2015) reviews agglomeration theory with heterogeneous agents.

14Glaeser’s agents live two periods, but the equilibrium conditions (1) and (2) are static.

5 Rossi-Hansberg, Sarte, and Schwartzman (2021, p.43) make this explicit: “Our analysis ab-
stracts from the role that spatial polarization might have on human capital formation.” So do
Fajgelbaum and Gaubert (2020, pp.1014-15): “Finally, we only considered a static model, where
each worker type is fixed regardless of location. We leave it to future work to study dynamic and
long-run implications of spatial policies when worker productivity or tastes can change over time
through skill formation or as a function of the skill mix in the community.”

6See Desmet and Rossi-Hansberg (2010) and Rossi-Hansberg (2019) for reviews. The latter



particularly difficult to solve, spatial economists have compiled a menu of tricks
to ease the computational burden. One is to assume perfect foresight and solve for
counterfactuals in changes rather than levels (Caliendo, Dvorkin, and Parro, 2019).'7
A key restriction of this method, however, is that the evolution of local fundamentals
must be invariant to the decisions made by agents in any counterfactual under
examination, which is precisely not the case for the hard problem with endogenous
growth.'® Another trick is to assume that agents solve static problems because their
returns are independent of the future, be that because they make decisions in only
one period (Allen and Donaldson, 2020) or because of separability assumptions on
the structure of their returns (Desmet and Rossi-Hansberg, 2014).1” By contrast, the
method I propose allows me to specify a forward-looking migration and investment
problem for the worker, which I can then connect explicitly to the data and with
which I can evaluate policies that have anticipatory or protracted effects.

Two closely-related contemporaenous papers are Duranton and Puga (2022)
and Kleinman, Liu, and Redding (2023). Motivated by the same story and the
same evidence, Duranton and Puga (2022) also model an economy in which growth
and agglomeration are driven by human capital spillovers. In their model, how-
ever, homogenous workers solve a one-period problem, which precludes studying
spatial sorting, human capital externalities, and life-cycle dynamics. Kleinman,
Liu, and Redding (2023), on the other hand, have developed a dynamic spatial gen-
eral equilibrium model that incorporates forward-looking capital accumulation and
migration. Crucially, though, the agents that accumulate capital in their model are
not the workers who migrate; the two groups interact only through markets. In my
model, workers migrate and accumulate human capital, with the rate of the latter
depending on the destination choice of the former.

The rest of the paper is organized as follows. Section 2 presents the model and
its predictions. Section 3 describes the quantitative procedure that casts the U.S.
as a dynamic spatial knowledge economy. Throughout, I highlight salient features
from the data on the U.S. urban system and workers’ migration and human capital
investments within it. Section 4 uses the quantified model to evaluate the proposed
place-based policy. Section 5 concludes.

advocates for the type of work I do in this paper: “On the theoretical side, [existing] frameworks
are still missing fully forward-looking dynamics in contexts where agents naturally care about
the impacts of their actions in the future. Modeling forward-looking behavior in dynamic-spatial
models with growth is essential when aiming to characterize optimal government policy, for example.
... Progress on this front is urgent.”

'"Komissarova (2021) uses dynamic hat algebra to study migration over the life cycle.

18 Another restriction is that decision rules must be log-linear in the state variables.

19See Proposition 1 of their paper and the surrounding discussion. To date, Desmet and Rossi-
Hansberg’s paper and follow-up work (see, e.g., Desmet, Nagy, and Rossi-Hansberg, 2018) have
been the best available solution to the hard problem.



2 Model

2.1 Environment

Time is continuous and indexed by ¢ € Ry. There is a finite number of cities
n=1,2,..., N, with their set denoted by A/. There are two goods in the economy:
the consumption good, which is homogeneous and freely traded, and land. The
consumption good is the numeraire.

The economy is populated by a mass L of risk-neutral workers who discount
their future flow utility at rate p and live a fixed length of time A, with age indexed
by a. Upon death, a worker is replaced by a newborn somewhere in the economy.?’
Each worker born in city n at date t is endowed with a unit stream of raw labor
and an initial level of human capital, indexed by z, drawn from a distribution with
density gn(z,t), to be specified later. The spatial distribution of human capital
at any moment ¢ has density g,(a,z,t), to be determined in equilibrium. If one
integrates this density over its full support of ages and human capital levels and
then scales by the total population L, the result is the population of city n at date
t, denoted by Ly(t).

Workers derive utility from the consumption good and land. They cannot write
debt contracts with each other, hence they split all of their income between the two
goods at each date. Land is assumed to be a strict necessity: after renting one
unit of it, workers spend all of their remaining income on the consumption good. A
resident of city n with human capital z at date t pays the flow cost

P.(z,t) = [ nLn(t)H"} z (1)

for her accommodation in that city. This functional form can be microfounded with
a monocentric city framework wherein commuting costs are paid in forgone earnings,
which will be proportional to a worker’s human capital (see Appendix A.1). Without
loss of generality, the flow utility from land can be normalized to zero. Thus, the
worker’s income allocation problem is always static and trivial, and her flow utility
is proportional to her flow of the consumption good. An exogenous local amenity,
B,,, multiplies this consumption flow.

Workers make forward-looking decisions over where and how to allocate their
labor. We start with where. Migration between cities is subject to two distinct
frictions: one governs the frequency of migration; the other, how much it costs. First,
each worker receives the opportunity to move across cities according to a Poisson
process with arrival rate A > 0, else she must stay where she is. This proxies for the
fixed costs of moving in a manner that greatly simplifies the analysis.?! Second, if a

29That all workers live for the same fixed length of time and are replaced one-for-one upon death
implies that the marginal distribution of age must be uniform for it to be stationary.

21For one, it simplifies the worker’s problem, since she needs only choose a destination conditional
on being mobile, not the timing of the move itself. On top of this, it simplifies how the human



worker chooses to move to city ¢ from city n, she must pay a permanent multiplicative
flow-utility cost 1/7,;, with 7,,,, = 1 for all n € N and 7,,; > 1 otherwise. Insofar as
these bilateral costs are correlated with distance, they impose a geography on the
urban system.

Upon arrival of each migration opportunity, a worker receives a set of prefer-
ence shocks, one for each city n € N/, that are distributed i.i.d. Fréchet with shape
parameter € > 1. Like migration costs, the preference shock for the chosen desti-
nation is multiplicative and permanent. Accordingly, a worker’s flow utility is the
product of her flow of the consumption good and the accumulation of her preference
realizations and migration costs along her chosen migration history.?” Since we will
soon take expectations over these preference shocks, I relegate the full technical
description to Appendix A.2 to save on notation in the main text.

Now we turn to how each worker allocates her labor in a given location. A
worker’s income equals her output. Production uses labor only and is linear in a
worker’s effective labor supply, which is the product of her fraction of time spent
working, 1—s, and her human capital, z. Production in each city benefits from
static agglomeration economies: labor productivity in city n is log-linear in the
local population with a city-specific scale, T}, but common agglomeration elasticity,
a.?3 Tt follows that a worker in city n supplying I = (1—s)z units of effective labor
will produce (hence earn)

yn(l’ t) = [TnLn(t)a] ! (2)
units of the consumption good.

Whatever labor she does not use in production is used to invest in her human
capital. The key assumption is that there are local externalities in this investment
technology. In particular, let

dz _
= =R Z.0F, B (0,1), (3)

where £ : [0,1] — Ry is an increasing, concave function and Z,(t) is a local human
capital index, the wvibrancy of city n, given by

Zn(t) = <L // 2 gnla, z,t) dzda)é, for ¢ > 0. (4)

The vibrancy is a weighted measure of the human capital in a city, accounting for
both the size of the city and the distribution of human capital within it, where ¢

capital distribution evolves, since those who are mobile are just a random subset of the whole
population and are therefore distributed according to the same law.

220ne can further introduce a permanent preference reduction at each draw to keep the mean
equal to one. Desmet, Nagy, and Rossi-Hansberg (2018) and ? wuse similar specifications for
preferences.

23Examples of static agglomeration economies include sharing the gains from individual special-
ization and improving the quality of matches in a frictional labor market. See Duranton and Puga
(2004) for a review.



governs the relative weights of those two factors. As ( — oo, a city’s vibrancy is
determined entirely by the city’s maximum level of human capital; as { — 0, it is
determined entirely by the city’s size. An alternative expression for the vibrancy
makes this clear:

Zn(t) = L(t)t (// £ W dz da>é = L, (1)< Znc(t),

where Zz, ¢(t) is the power-¢ mean of human capital within city n at time ¢t. When
¢ = 1, the vibrancy decouples into the product of the city’s size and its arithmetic
mean of human capital.

Equations (3) and (4) encode many of the key features of the model. I will
highlight six of them.

Dynamic agglomeration—First, holding fixed the marginal distribution of human
capital within a given city, the returns to investment are strictly increasing in the
city’s size. This is a dynamic agglomeration economy—a mechanism through which
city size has a prolonged positive effect on local productivity—because it quickens
the accumulation of human capital by city residents. Contrast this with the static
agglomeration economies introduced in Equation (2), which have only an instanta-
neous effect.

Marshallian knowledge spillovers—Second, unlike in models where workers search
randomly for more-productive partners from whom to learn, here workers make
continuous use of the entire stock of local human capital, Z,(t), as they forge their
own. This is partly for technical convenience,?* but it also reflects an observation
about local economies first made by Marshall (1890, p.271): “The mysteries of trade
become no mysteries; but they are as it were in the air.” Of particular note is that a
worker need not meet a partner who has more human capital than she does in order
to learn.”” Like chefs swapping recipes, software developers swapping code snippets,
or a chef and a developer discussing the wisdom of mise en place, both can learn
regardless of relative human capital.’® Equation (3) just takes the further step of
asserting that meetings are sufficiently unconstrained in cardinality, frequency, and
duration that we lose little by simply endowing workers with access to stock of local
knowledge, defined in Equation (4).

24Random search for an individual learning partner with Poisson arrival would require the law
of motion for a worker’s human capital to be a jump process, where her human capital jumps upon
meeting a partner, with the size of the jump potentially dependent on her own human capital and
that of her partner.

2 Davis and Dingel (2019, p.159, fn.13) argue that models of idea exchange in which only the
lower-productivity agent benefits from a random meeting, like those in Lucas and Moll (2014) and
Perla and Tonetti (2014), are poorly-suited to be embedded in a spatial economy.

26Berliant, Reed, and Wang (2006) and Berliant and Fujita (2008) consider models in which
agents possessing vectors of task-specific knowledge search for partners with whom to exchange
ideas in order to improve their productivity. Any agent can learn from any other so long as the
other’s knowledge vector is not a strict subset of her own.



Moreover, there is no segmentation of the population into inventors/entrepreneurs,
for whom ideas matter, and others, for whom they do not. All benefit from access
to knowledge in the city. As Glaeser (1999, p.255) puts it, reflecting on the same
quote from Alfred Marshall, “As impressive as the role of cities in generating new
innovations may be, the primary informational role of cities may not be in creating
cutting edge technologies, but rather in creating learning opportunities for everyday
people. ...[Marshall’s quotation] pertains to young apprentices learning commonly
known mechanical skills in industrial centers, not just to cutting edge innovations.”

Learning complementarity—Third, the investment technology is supermodular in a
worker’s own human capital and the vibrancy of her location. So highly produc-
tive workers benefit more from living in big cities, especially when those big cities
are populated with other highly productive workers. This complementarity pushes
toward sorting of highly productive workers into bigger cites (Gaubert, 2018). Sort-
ing will not be perfect, though, because other complementarities and margins of
heterogeneity affect migration choices, as we discuss more in Section 2.3.

Nesting of Ben-Porath model—Fourth, ignoring the external effect from vibrancy,
this is the classical form of the human capital investment technology dating back to
Ben-Porath (1967).>” Workers who live finite lives make on-the-job investments in
their general human capital, using a technology that is concave in both time invested
and their current human capital, forgoing part of their wage, which is proportional
to their current human capital, to do so. The Ben-Porath model specifies k(s) =
%s” with 7 € (0,1), so I will use that functional form in all that follows. Recent
empirical work has focused on dissecting general human capital into firm-, industry-,
occupation-, and even task-specific components, but the classical model does a good
job of capturing the life cycle dynamics we are focused on here (Heckman, Lochner,
and Taber, 1998; Sanders and Taber, 2012). We will discuss this further once the
worker’s dynamic program has been presented in Section 2.2.1.

Costly knowledge spillovers—Fifth, the investment technology bears a purposeful
resemblance with the analogous technology in Davis and Dingel (2019). Davis and
Dingel were the first to microfound agglomeration as an outcome of costly idea
exchange within a system of cities. Both our technologies require costly time in-
vestment and feature complementarities between an individual’s skill and the size
of and average skill within her city. A key difference between our models, however,
is that, because their model is static, the return from learning in their environment
is instantaneous, whereas in mine the return accrues over time.>®

ZTHeckman (1976) and Rosen (1976) are other seminal contributions.

2 Davis and Dingel (2019) have a variable called the “value of the local idea-exchange envi-
ronment” that is analogous to what I call the vibrancy of the city. Their construction is more
complicated insofar as it weighs levels of human capital not simply by their prevalence (my g) but
also by the time that workers with each level of human capital invest in learning (my s). To copy
their construction would require an additional loop in the algorithm I present in Section 3, so I
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Affordance of balanced growth—Finally, the investment technology exhibits constant
returns in the pair of human capital measures, (z, Z,,). Because production is linear
in human capital, constant returns in the accumulation thereof is a necessary condi-
tion for balanced growth (Jones, 1999). Also, because k is increasing and concave,
the technology exhibits diminishing returns in time invested, s. Since production is
linear in time, the concavity is needed to ensure that optimal time allocations are
interior.

2.2 Equilibrium
2.2.1 Worker’s problem

A worker chooses her labor allocation to maximize her lifetime utility, subject to
the learning process (3) and the migration frictions outlined above, taking the path
of local populations and vibrancies as given. I show in Appendix A.2 that, after
taking expectations over her idiosyncratic preference shocks, the worker’s problem
can be written recursively as the following Hamilton-Jacobi-Bellman equation,

pVila, z,t) = srél[%,}f] {Bn [TnLg(l—s)—anfL”} z 4 0, Vu(a, z,t) [ﬁ(s)zﬁZ%fﬁ} }

+ A Z mni(a, z,t) [Eni(a, z,t)Vi(a, z,t) =V, (a, 2, t)] (5)

)

+ 9uVi(a, z,t) + 0, Vi (a, 2, 1),
with terminal condition
Vo(A4,z,t) =0 for all (n,z,1), (6)
where I have omitted the time arguments from local characteristics, and where

e 2\ 7t ¢
Mpi(a, z,t) = Tm_V(a %) (7)
Zkz Tn]:Vk(CL?Z’t)E

is the optimal migration share, whose functional form follows from the preference
shocks being distributed Fréchet with shape parameter ¢, and

1 ]. _ 14
gni(a; 2, t) - Namni(ch Z, t) €

(8)

accounts for the selection effect that accompanies optimal migration.

The Hamilton-Jacobi-Bellman equation has seven distinct components. The
left-hand side is the annuity value at date ¢ of a worker of age a with human capital
z living in city n. The first term on the right-hand side is that worker’s consumption
flow, the difference between her income (2) and her urban cost (1), multiplied by

decline to do so.
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the relevant local amenity. The second term accounts for the change in her value
function that comes from human capital investment according to (3) and (4). A max
operator with respect to time, s, encases the first two terms as the worker trades off
consumption today with future human capital. I denote by s, (a, z,t) the solution to
this maximization problem. The third term is the option value of moving, of which
the right to exercise, recall, arrives at rate A\. With probability my;(a, z,t), defined
in (7), the worker exchanges the value of her current location n for that of her new
location 4. The latter is multiplied by &,i(a, z,t), defined in (8), to account for the
underlying selection of her idiosyncratic optimal destination. Notice that even when
a worker chooses to stay put, which occurs with probability my,,(a, z,t), she still
receives the selection bonus. Now looking at the last line, the fourth term on the
right-hand side captures the aging of the worker. The fifth term accounts for the
change in value over time as the economy evolves.”? Finally, the terminal condition
in (6) states that the value at death is zero regardless of location, human capital, or
date.

2.2.2 State evolution

Local populations and vibrancies evolve in accordance with the spatial distribution
of human capital, summarized by its density g. The density follows a Kolmogorov
forward equation

Ocgn(a, z,t) = —0y[hn(a, z,t)gn(a, z,t)] — A[1 — mpp(a, 2,t)|gn(a, z,t)

+ /\Zmin(a,z,t)gi(a,Z,t) - 8agn(a7z7t)7 (9)

with initial condition ¢, (0, z,t) = %gn(z, t), where
hn(a, 2, t) = Klsn(a, 2,1)]27 Z, ()7 (10)

is the optimally-controlled drift of an individual worker’s human capital and, recall,
g is the density from which each new worker’s human capital is drawn.*"

"~ The Kolmogorov forward equation has six distinct components. The left-hand
side is the instantaneous change in the density at a particular point (n,a,z) of the
state space at date ¢, so it will be natural to describe the right-hand side in terms
of flows of workers into or out of that point of the state space. The first term on
the right-hand side is the outflow along the productivity dimension that comes from
investment, where hy,(a, z,t), defined in (10), measures the speed of the flow and
gn(a, z,t) measures how many workers are “traveling” at that speed. The second

29 Although the pace of aging conforms with calendar time, the fourth and fifth terms are not the
same. One can see this by holding ¢ fixed and thinking about what it means to vary a, and vice
versa.

30Gee Appendix A.3 for a heuristic derivation of the Kolmogorov forward equation.
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term is the gross outflow of (a, z)-workers from city n. The third term is the gross
inflow of the same type of workers from other cities. Flows go both ways because
of the idiosyncratic preference shocks. In general, the two terms will not cancel
because different cities have different marginal densities at (a, z). The fourth term
is the outflow along the age dimension. Finally, the initial condition states that the
marginal human capital density at entry is given by g.

2.2.3 Equilibrium

In an equilibrium, workers invest and migrate optimally given the evolution of loca-
tion characteristics, the underlying distribution evolves as workers’ choices dictate,
and at every moment the distribution integrates properly to the location character-
istics. A formal definition follows.

Definition 1. An equilibrium is a tuple of functions {V,s,m,g} on N x [0, A] x
R4+ x Ry and a tuple of functions {L,Z} on N' x R, such that

(i) workers solve the Hamilton-Jacobi-Bellman equation (5), taking paths of pop-
ulations L and vibrancies Z as given;

(ii) the density gn(a,z,t) evolves according to the Kolmogorov forward equa-
tion (9), taking workers’ optimal decision rules as given;

(iii) populations and vibrancies satisfy their definitions given gy (a, z,t):

L (t) :L//gn(a,z,t) dz da, Zn(t) = (L//Zan(a,z,t) dzda> :

(iv) local population shares sum to one for all ¢:

1=>" L"L(t) => //gn(a,z,t)dzda.

neN neN

e

The equilibrium of this economy is an example of a mean field game. In a
mean field game, each agent is one of infinitely many rational players controlling
her own state (here, her human capital, current location, and age, though the last
one is uncontrolled). Agents are indistinguishable modulo their state, so an agent
does not care what any other particular agent does, since the latter’s action would
be drowned out regardless. Instead, each agent only needs to track the distribution
across states (here, the density g). The resulting Nash equilibrium is the natu-
ral extension of a rational expectations equilibrium to an economy populated by
heterogeneous augelrlts."f'1

31With a representative agent, the distribution is degenerate at what one would call the “aggregate
state.” An equilibrium requires that the state of the representative agent is consistent with this
aggregate state, as in the “big K, little k trick” (Ljungqvist and Sargent, 2018, §12.8.1).
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2.2.4 Balanced growth paths

A complete analysis of this economy would require the ability to calculate solutions
for all initial distributions. This would be a useful project to carry out, but I limit
myself in this paper to the analysis of a set of particular solutions for which the
growth rate and the distribution of relative human capital are both constant over
time.

Definition 2. A balanced growth path (BGP) is a number v € Ry and functions
(v,0,p,¢) on N x [0, A] x R4 4 such that

Val(a, z,t) = vp (a, x)
sn(a, z, ): on (a,x)
mni(a, z,t) = ,um (a,x)
gnla, z,t) = on (a, )

and (V,s,m,g) is an equilibrium with initial condition g, (a, z,0) = ¢, (a, z), where
x = ze 7 is relative human capital.

A BGP is an equilibrium path along which the marginal distribution of age
is stationary and the marginal distribution of human capital evolves as a “trav-
eling wave,” holding its shape while shifting to the right at a constant rate ~.
To hold its shape, the distribution must have its quantiles growing at the same
rate: letting capital letters denote cumulative density functions, the BGP requires
Gnla, z,t) = ®,(a,ze” ") for any (n,a), hence the gth quantile 2} (a,t), defined by
D, (a, z4(a,t)e” ), must satisfy

zi(a,t) = ' [@y(a)] 7 (q)-

That the value function and decision rules take the forms given in Definition 2
follows immediately.

If workers lived forever, each could learn ad infinitum, hence so could the human
capital distribution shift to the right. But workers here live only finite lives, so how
the population turns over will play a critical role in enabling balanced growth. To
that end, I assume that the human capital distribution of entrants, summarized
by the density g, tracks the human capital distribution of existing workers in the
following way.

Assumption 1. The c.d.f. of initial human capital, G, whose density is g, satisfies
two conditions: (i) its human capital quantiles grow at the same rate as those of G;
(ii) the lower bound of its support is strictly positive and also grows at this rate.

For example, G could be uniform over an interval of fixed relative size around,
say, the 25th-percentile of G. For another, G could be a two-sided truncation of
GG with the same bounds. In any case, Assumption 1 has the interpretation that
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successive cohorts of young adults enter the labor market with more human capi-
tal because, for instance, they spent an unmodeled pre-period learning from older
adults, whose median level of human capital is growing at rate «v. The productivity
growth of labor market entrants is therefore still endogenous because it is piggy-
backing on that of current workers. This growth is also an additional externality
because current workers do not account for the effect of their investments on future
entrants.

Assumption 1 is necessary because it ensures two things. First, there is a
well-defined detrended density ¢ (z) = thgn(z, t). Second, the lower bound of the
equilibrium support will be strictly positive, so no worker will get stuck at z = 0,
which is an absorbing state.

Under Assumption 1, the conditions of a balanced growth path can be restated
in terms of relative human capital. First, restate the location fundamentals as

anL/ bnla,z)dxda, X, = (L//a;C bnla, ) da:da)é, (11)

so Ly(t) = L, and Z,(t) = "X, for all t. The former implies that the city size
distribution is invariant along a BGP. The Hamilton-Jacobi-Bellman equation (5)
becomes

(0= ¥)vn(a,2) = By (TaLa[l = on(a, @)] = pulfy' ) @
+ Oyvn(a, x) (Fc[an(a, D). Gl ’ym)

+ A ZZ tni(a, ) [Eni(a, z)vi(a, ) — vy (a, x)]
+ Oqvn(a, )

(12)

with boundary condition v, (A, z) = 0 for all (n, z). Notice that the relevant discount
rate is now p — =, which I assume is positive, and the relevant drift is now the
difference between how much human capital the worker accrues, k[o, (a, z)]z? Xa 7,
and how much the underlying human capital distribution shifts, vx. In the space
of relative human capital, if a worker does not accumulate human capital quickly
enough, she falls behind. The Kolmogorov forward equation (9) becomes

0=—0, {(/{[on(m )P X1F — 'yx) onla, ZE)}
— M1 = ptn(a, ))dn(a, z) + X Zi#n tini(a, ) ¢i(a, ) (13)
— Oatn(a, )

with boundary condition ¢, (0,z) = %Qn(x) for all (n,z). Total production on a
BGP is given by

Y, (t) = e"'L // T,Ly[1 — op(a, z)|x ¢n(a, z) dx da, Y(t) = ZYn(t),
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so production, too, grows at rate . The definitions of the detrended decision rules
will be shown in the next section. All derivations are shown in Appendix A.4.

2.3 Properties of a balanced growth path

A balanced growth path must satisfy Equations (11)—(13) in addition to an equation
that determines the growth rate . I will show that the growth rate can be written
as a weighted average of returns to investment in human capital across all workers,
with larger weight given to the investment that happens in more vibrant cities.
First, though, I establish properties of workers’ decision rules and the cross-section
of cities for a generic ~.

2.3.1 Characterization of worker decision rules and city aggregates

The following lemma will prove useful throughout this section.

Lemma 1. The value function v,(a,x) is decreasing in age, a, and increasing in
relative human capital, x. Moreover, the second partial Oy zvn(a, ) is always non-
positive, as is the cross partial Og zvn(a, ).

Unsurprisingly, for a given relative human capital, a worker would prefer to be
younger, and for a given age, she would prefer to be more productive. The signs
on the second-order partial derivatives are not much more difficult to see. A formal
proof is in Appendix A.4.

Worker decision rules—Consider the optimal investment rule along the BGP,

R Ozvn(a,x) (X, 1-8 =
U"(a’m):<BT(La) (%) ) | a9

where, recall, k(o) = %a”. We are interested in how investment varies with worker
states and city characteristics according to (14). For states, one must consider both
the direct effect and the indirect effect that is mediated through the value function.
For city characteristics, one must do the same, keeping in mind that the indirect
effects will also be mediated through the composition of residents that the city
attracts, which determines its vibrancy.

By Lemma 1, the investment rate is weakly decreasing in an individual’s relative
human capital, z, for any fixed age. Relative to a worker in the same city with
less human capital, a more productive worker faces diminished returns (at rate /3)
to using her human capital in investment but undiminished returns to using it in
production, so she optimally shifts more of her labor toward production. Take
care to notice that this does not imply by itself that her accumulation of human
capital is slower—the higher x may more than offset the lower x(c) in the drift
component /@(U)xﬁX}fﬂ . Conditional on human capital, accumulation is slower for
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older workers, though, because Lemma 1 ensures that the marginal value of relative
human capital d,v,(a,z) is non-increasing in a.*”

The effects of location are much more difficult to disentangle, at least in part
because it is not obvious how 9,v,(a, z) will vary across cities for given arguments.*?
Cities with higher fundamental productivity, T}, incentivize workers to produce
rather than invest, so the direct effect is to decrease o,,, all else equal. But cities
with higher 7}, also attract more and more-productive workers in equilibrium, which
raises L, and X,,, leading to an ambiguous total effect.’® How the investment
rate responds to city size depends on the relative strength of static agglomeration,
LY, and dynamic agglomeration, Lg_ﬁ ) C, where the latter is embedded in the
vibrancy. But city size, too, has an indirect effect through the composition of the
city, summarized by the power mean of human capital, ¥, ¢, the other component
of vibrancy, since workers in different states trade off both types of agglomeration
with congestion in different ways. Even about the effect of average human capital
we cannot say anything conclusive. The direct effect of more-productive neighbors
is to incentivize more investment. There is an indirect effect through city size—
because raising the average human capital of a city will attract more residents—
that will accentuate the direct effect if 1—3 > a(.?® The indirect effect through the
marginal value of human capital, however, is still ambiguous. These conclusions are
summarized in the following proposition.

Proposition 1. The optimal investment rule along the BGP, oyn(a,x), is non-
increasing in both age, a, and relative human capital, x, but varies ambiguously
across cities, n, for any state.

Now consider the optimal migration rule along the BGP,

T, vi(a, )
>k Tore vk (@, )€

which specifies the probability with which a worker of age a and relative human
capital x living in city n would choose to migrate to city ¢ upon the arrival of an
opportunity shock. As Equation (15) makes clear, how migration decisions vary with
individual states and location characteristics is mediated almost entirely through the
corresponding variation in the expected value function. This makes it difficult to
tease apart how each model component affects migration rates. Nevertheless, one
can make four observations.

fimi(a, ) = (15)

32Contrast this with a perpetual youth model, wherein the age of an agent has no effect on her
decisions because her hazard rate of death is always the same.

33Total land costs, for example, vary with both location and individual human capital, which
means they affect o indirectly through this term.

34This is the layman’s way of expressing that the partial and total derivatives with respect to T3,
need not be the same.

35That increasing average human capital in a city induces immigration is in no way inconsistent
with the observation that increasing city size may not induce an increase in average human capital.
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First, workers are generally attracted to nearby or centrally-located vibrant
cities with high amenities and high consumption net of urban costs (e.g., high T,
and low py,), since each of these features either saves on 7 today or raises the value
v. The value is fully forward-looking, so it accounts for the effect of location on a
worker’s lifetime consumption profile, not just her current consumption.

Second, as previewed in Section 2.1, sorting on individual human capital is
imperfect. Because of the extreme-value specification of preference heterogeneity,
the share in (15) is strictly positive for any state (n,a,z) and destination ¢, which
implies that all ages and relative human capital levels will be present in any given
city 1.

That is not to say the proportions in which they are present will be the same,
though, which brings me to the third observation: different cities may be dispropor-
tionately young or skilled or varied along either dimension. A city’s particular mix
of fundamentals, agglomeration and congestion forces, and skill composition will at-
tract different types of workers to varying degrees.”® A young worker, for example,
would typically care more about the vibrancy of a city than would an old worker,
because the young worker would typically invest more of her time in learning.

The final observation is that age also has a secondary effect on migration: as
a worker approaches the end of her lifespan, her value function approaches zero for
any (n,x). It follows from (15) that the bilateral costs {7,,;} play an increasingly
large role in determining migration decisions. With 7, = 1 < 7,; for all i # n, it
further follows that the old move less, even for a fixed rate of opportunity shocks,
A. This is consistent with the evidence that I will discuss in Section 3.

These conclusions are summarized in the following proposition.

Proposition 2. The optimal migration rule along the BGP, pyi(a,x), favors nearby
or centrally-located vibrant cities with high amenities and high consumption net of
urban costs, with different weights placed on each feature by workers in different
states. Nevertheless, at least some workers in each state mowve to each destination.

City aggregates—Cities result from the balance of agglomeration and congestion
forces. Individuals are drawn to large cities for the immediate earnings premium
(with elasticity o) and the steeper earnings profile (with elasticity %, for a given
human capital distribution within the city), but they trade both off against higher
urban costs (with elasticity 6,) and lower average flow utility (with elasticity €)
operating through the idiosyncratic preference shocks.

Even on a BGP with homogeneous city fundamentals,®” city aggregates {L,, X, }

would be non-zero but heterogeneous so long as neither the agglomeration nor the

360f course, the size and composition of each city is itself an equilibrium outcome determined by
the migration choices of different types of workers.

37That is, B, =B, T, =T, p, =p, and 0,, = 0 for all n € N and 7,,; = Tpx = Ti for all distinct
i,k,n € N. Allowing for heterogeneous fundamentals will make it possible in Section 3 to match
observed patterns in U.S. cities, where there is not a strict ordering of cities’ productivity and costs
by size.
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congestion forces are too strong. Along a BGP of this sort, larger cities would be
more productive and more costly because o« > 0 and 6 > 0, respectively. For a fixed
marginal distribution of human capital, larger cities would also be more vibrant
because ¢ > 0 and 8 < 1. Whether they are unambiguously more vibrant depends,
however, on the equilibrium effect of each city’s size on its skill composition. One
can see this by totally differentiating a city’s vibrancy by its size:

an . 1 —% ldq_jn,{

— Ln € Zpe+ L .
L, o et

Thus, larger cities are always more vibrant if and only if

djn,(/j;n,c o 1

dL, /Ly ¢ (16)

The left-hand side is an equilibrium object that depends on the underlying human
capital distribution, but one can still observe that this is a relatively lax constraint.
When ¢ = 1, for example, the inequality in (16) simply requires that a city’s average
level of human capital decreases in percentage terms no more than one-for-one with
a one percent increase in its population. Since we generally expect higher ability
workers to sort into larger cities because of the supermodularity in consumption and
learning, this is not a particularly stringent requirement.

When the inequality in (16) is satisfied, larger cities are more productive and
more vibrant. It follows that, for a fixed investment rate, the model generates a
city size earnings premium with both static and dynamic components: a worker’s
earnings jump upon moving to a bigger city, but her experience in the big city is
also more valuable because her returns to investment are higher in a more vibrant
place. This is consistent with the evidence in Glaeser and Maré (2001), Baum-Snow
and Pavan (2012), and Duranton and Puga (2022) for U.S. cities, which I will use
to quantify the model in the next section.

These conclusions are summarized in the following proposition.

Proposition 3. On a BGP with homogeneous city fundamentals, larger cities are
always more productive and more costly. In addition, larger cities are more vibrant
whenever the inequality in (16) is satisfied. When large cities are more vibrant, the
model generates a city size earnings premium with both static and dynamic compo-
nents for a fived investment rate.

2.3.2 Characterization of the growth rate

The growth rate 7 is determined by integrating (in the sense of Lebesgue) the
Kolmogorov forward equation (13) over the state space and leveraging two facts: (i)
there is no net migration on a BGP (Equation (11)), and (ii) the marginal density
with respect to age is uniform. With a bit of calculus, solving for ~ yields the
following proposition.
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Theorem 1. A balanced growth path characterized by the functions {v,o, u, ¢} has
the growth rate

_ Y fit (e, 2o’ X0 du(a, ) da
7= > P2 on(a,a) da ,  Vx € supp(¢). (17)

Proof. See Appendix A.4. O

The expression in (17) is a natural extension of the representative-agent, one-
location case from Uzawa (1965). In what follows we will build intuition for (17) by
rebuilding the present model step-by-step atop Uzawa’s.

Uzawa (1965) as a foundation—Uzawa’s model can be summarized in one optimiza-
tion problem:

V{z(0)] = Srél[a}i /000 e P — s(t)]z(t) dt

s.t. 2(t) = k[s(t)]z(),

where & is increasing and concave.?® That is, the representative consumer splits
her labor between learning, with fraction s, and producing, with fraction 1 — s, in
order to maximize the present discounted value of her output, subject to the specified
learning technology. Under the assumption that x(1) < p < £(0)+~'(0), the optimal
time allocation s* is interior, unique, and implicitly defined by '(s*)(1 — s*) =
p — k(s*). Moreover, a unique balanced growth path exists, and its growth rate is

v = k(s*) < p.t?

Reintroduce the learning externality—The representative agent in Uzawa’s economy
now faces the law of motion
i =k(s)2P 2P,

where z is her own human capital and Z is the aggregate stock, which the agent
takes as given. Of course, in equilibrium the two must be the same, but because the
agent does not internalize her effect on the aggregate, she underinvests. Indeed, her
optimal time allocation s} becomes implicitly defined by «/(s7)(1—s7) = p— Br(s}),
hence it is strictly less than s*. By the monotonicity of k, the growth rate, too, is
lower than before.

38This statement of Uzawa’s model abstracts from physical capital and population growth.

39This underscores a point first made by Mulligan and Sala-i Martin (1993): In Uzawa (1965)
and Lucas (1988), although a human capital externality in production or investment would affect
the rate of balanced growth, such an externality is not required to sustain balanced growth. It is
sufficient that the investment technology be linear in z.
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Reintroduce the finite investment horizon—Suppose that instead of living indefi-
nitely, the representative agent dies with a fixed hazard rate ¢, after which she
bequeaths her human capital to her replacement.’”’ Then optimal time allocation
s5 becomes implicitly defined by £'(s3)(1 — s3) = p+ 0 — Br(s}), hence it is strictly
less than s7. With a shorter horizon over which to reap the returns from her human
capital, she invests less. By the monotonicity of x, the growth rate, too, is even
lower.

Reintroduce worker heterogeneity—Now instead of a representative agent, let work-
ers vary in their human capital. Let workers vary in their age, too, by imposing that
workers die after a fixed length of time instead of at a fixed hazard rate. This im-
plies that there will be a distribution of workers over the age-by-human capital state
space, the density of which we denote by ¢g. This distribution will evolve over time,
so we need a Kolmogorov forward equation to specify precisely how it evolves. Its
evolution will determine how the aggregate stock of human capital grows, because
the stock must now be computed as an integral with respect to this distribution,
Z(t) = L [[zg(a,zt)dzda."" Workers will choose different investment rates de-
pending on their state, so—unlike in the last two steps—we cannot identify a single
rate s3 that pins down the growth rate as x(s3). But what we can do should be in-
tuitive: the growth rate is a weighted average of returns to time invested, k[o(a, z)],
and indeed we find that the correct weighted average is

_Ji klo(a,2))e" X1 ¢(a, 2) da
Jit e é(a,2) da

where we use the same notation for detrended functions and variables as we have
been using above.

, Va € supp(9),

Reintroduce cities and migration—Finally, allow the workers to migrate between a
finite set of cities and restrict the learning externality to be local in scope. Then the
growth rate becomes as stated in (17). The growth rate is again a weighted average
of the returns to time invested, but now more vibrant locations get more weight.
Despite the fact that cities vary in their vibrancy, all cities grow at the same rate ~y
on the BGP because migration acts as a form of knowledge diffusion.”” As workers

40This is not the same as specifying a finite lifespan for each agent, but that specification would
imply heterogeneity, which I wait to introduce in the next step.

“IThis is the simplest possible stock measure. My definition of vibrancy takes the additional
step of introducing curvature, governed by the parameter ¢, in order to adjust the weight placed
on different features of the skill distribution.

42Unbalanced growth would be unfit for this setting: with different rates of output growth, even-
tually some cities would all but disappear while one or a few would absorb all the economic activity.
In general, models of unbalanced growth rely either on nonhomotheticities across the “unbalanced”
entities (usually sectors) or on heterogeneous TFP growth rates across entities aggregated with a
CES technology. Neither of these makes sense when the entities are cities.
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flow between cities according to (15), they bring their human capital with them.*?
So although there is no net migration on the BGP, the gross migration of workers
through the urban system spreads the gains from human capital accumulation across
the whole system.

Summary—The preceding steps reveal a few key insights. Most importantly, they re-
veal that the spatial distribution of human capital does matter for aggregate growth.
Indeed, the aggregate growth rate (17) is the weighted average of returns to invest-
ment in human capital across all workers, with larger weight given to the learning
that happens in more vibrant (roughly, bigger and more skilled) cities. Investment
rates vary with workers’ age, human capital, and location. Relative to an infinitely-
lived planner, workers underinvest because (i) they have a shorter horizon over which
to reap the benefits of their human capital and (ii) they do not internalize the local
learning externality.

2.3.3 Well-posedness of a balanced growth path

Proposition 1 established that if a balanced growth path characterized by the func-
tions {v, o, i, ¢} exists, it must have the growth rate specified in Equation (17). This
left aside whether there exists an entire path {v, o, i, ¢,v} that solves (11)—(15) and
(17) uniquely.

To date, the well-posedness of solutions to this class of coupled partial differ-
ential equations has not been proven.’* Nevertheless, I take the following measures
to ensure that my results are sensible. First, I impose k(1) < p < 8k(0) 4+ /(0),
which guarantees the existence of a unique solution in the Uzawa model with an
externality described in Section 2.3.2.%% Second, I show in Section 3 that a solution
exists to the discretized version of the BGP system under my chosen parameters.
Those parameters are chosen so that the BGP matches a number of moments in the
data. Re-solving the model with those parameters from different initial conditions
consistently recovers the same BGP, suggesting that the observed BGP is locally
unique and stable. Third, when solving the policy counterfactual in Section 4, 1
follow Ahlfeldt et al. (2015) in selecting the closest counterfactual BGP by using the
baseline BGP as the initial value for the solver.

“3Contrast this with models like that in Eaton and Eckstein (1997), which must assume an ad
hoc technology diffusion across cities.

441n standard quantitative spatial models, the existence of a unique equilibrium is typically estab-
lished by a condition on the agglomeration and congestion elasticities that translates as “congestion
forces always dominate agglomeration forces” (Redding and Rossi-Hansberg, 2017). Such a condi-
tion cannot be stated here in part because the dynamic agglomeration force depends on the marginal
distribution of human capital within each city, which is a nonparametric equilibrium object.

BWith k(o) = %o for n € (0,1), this translates to simply 8& < pn since £(0) + &'(0) = occ.
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3 Quantitative analysis

In this section I describe how I quantify and compute a BGP. I begin by describing
the algorithm I use to compute a BGP given model primitives. I then detail how I
quantify those primitives using U.S. data. Finally, I plot workers’ decision rules and
city characteristics in order to compare them to targeted and untargeted moments
from the data.

3.1 Algorithm to compute a bgp

The algorithm, adapted from Achdou et al. (2022), is a fixed-point algorithm that
iterates on a vector of length 2N + 1 containing the aggregate variables {L, X, ~v}.
Within each iteration, I use finite difference methods to solve the coupled partial
differential equations (12) and (13) that characterize allocations along the BGP.
This involves discretizing the continuous state space and leveraging the sparsity
that comes from working in continuous time to compute and manipulate a large
transition matrix.’ Appendix C provides the full details.

4®Rendahl (2022) demonstrates under what conditions similar computational speed can be
achieved in discrete time.
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Algorithm 1: Compute a BGP
Data: parameters {4, p, \, €, a, (, 8,1, K, Tscale }
location fundamentals {By,, Ty, P, On, Tni }, and
relative productivity distribution of entrants ¢
Result: BGP {v,0, 1, ¢;v}
Initialize with guess {L", X° 4°}. Denote iterations by ¢ = 0,1,2, .. .;
while not converged do
Given {L*, X", 7"}, solve the Hamilton-Jacobi-Bellman equation (12) 1
using a finite difference method and calculate the decision rules
ot (a,x) and pt;(a,x);

Given o},(a,z) and p!,(a,x), solve the Kolmogorov forward 2
equation (13) for ¢ (a,x) using a finite difference method;

Given ¢}, (a,x), compute the corresponding local populations and 3
vibrancies

A=

L = L// oy (a,x) dx da, Xt = <L // 28t (a,x) da da>

for each n, and compute the implied growth rate

w0 _ Tl rlon(a2)la?(X)! 7 61 (a,2) da
> Jit @ ot (a, ) da

, € supp(¢")

as defined in (17);
if {L*,X* 5"} close enough to {L*, X" 4"} then
| converged;
else
construct {L‘T X+ 44+ as a linear combination of the previous
guess and the computed values;

end
end

3.2 Quantification

The Data line of Algorithm 1 lists the model primitives that must be set in order
to calculate a BGP. To quantify them, I proceed in multiple steps. Throughout, 1
will make a number of choices that facilitate matching estimates from the human
capital literature and Duranton and Puga (2022, Table 2). All data descriptions are
in Appendix B.
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Select cities and set congestion elasticities, {N,6,}

I start with the 378 Metropolitan Statistical Areas (MSAs) that had populations
exceeding 75,000 people in the 2010 U.S. Census.?” Because the number and sizes
of cities matters for workers’ decisions in the model, it is important to represent
the entire U.S. urban system. At the same time, the number of parameters to
be estimated scales linearly with the number of cities, and the state space scales
quadratically, so incorporating all 378 MSAs individually is prohibitively costly.
Instead, I assign cities to groups based on metropolitan population in 2010. Any
MSA that had a population greater than 2 million (of which there are 30) is in a
group by itself. Below 2 million, groups are incremented by 500,000, so there are 4
such groups and 34 groups in total. The crucial restriction is that cities in the same
group are forced to be identical. So Rochester, NY and Memphis, TN, both with
2010 populations between 1 million and 1.5 million, for example, are modeled as
two copies of the “1.0M-1.5M” city. Accordingly, there are 378 cities in the model
but only 34 types of cities among which workers choose.

I set the congestion elasticity in each city equal to the elasticity of housing
supply estimated by Saiz (2010).%® These estimates are determined primarily by
land availability and land use regulations in each city. In groups with multiple
cities, I use the population-weighted mean elasticity.

Determine migration parameters, {\, ¢, 7,;}, using ACS data

The 2011-15 American Community Survey (ACS) Migration Flow files aggregate
over five years of surveys to provide counts of respondents who changed residence
within the last year, cross-tabulated by age bin.*” For each age bin and origin MSA,
one can observe the count of residents that (i) did not move, (ii) moved within the
same MSA, (iii) moved to each of the other possible destination MSAs, or (iv) moved
to a non-metropolitan or foreign location.

The parameter A can be computed directly from these data. Recall that migra-
tion opportunities arrive according to i.i.d. Poisson processes at rate A. It follows
that a fraction A of the population will be allowed to move each year. Since within-
MSA moves are observed separately from non-moves, I can simply set A equal to
the overall fraction of urban residents that move. In light of the many age-varying
determinants of migration that are not modeled explicitly here, however, I now allow
A to vary with age, A(a), which decreases monotonically from 26.6% at age 20 to

4"Throughout, I define MSAs using the February 2013 delineation of the Office of Management
and Budget (OMB) whenever possible. Exceptions are noted explicitly in Appendix B.

“8In 19 cities, Saiz (2010) data are missing. In those cases, I follow Hsich and Moretti (2019) in
imputing the elasticity from the relevant state average.

49 Age is broken down into the following fifteen categories: 1 to 4 years, 5 to 17 years, 18 to 19
years, then five-year bins through age 74, and a final bin for 75 years and over. Consistent with
the age restriction I impose later, I only consider flows by those from age 20 through age 59.

25



7.6% at age 59.”"

The parameter e governs the migration elasticity with respect to a worker’s
value, which is the present discounted sum of her lifetime real consumption. I set
€ = 3 based on estimates of the migration elasticity with respect to real wages at
decadal frequency from Diamond (2016, Table 5, pp.505-8).

To compute the bilateral migration frictions, I use the calibrated migration
elasticity to invert the implied frictions from the flows I observe in the ACS. In
particular, I construct a Head-Ries migration index

Honilin _ TnZ'CTi;E (18)

T —€,_—¢’
Hnn i Tnn Ty

where [i,; is the average likelihood over all ages and relative productivities of moving
from n to 4 conditional on moving.”! Under the assumption that 7, = 1 for all n
and 7,; = T, for all n, 4, the index reduces to

Honn fbii

where the right-hand side is directly observed. I do this first at the level of individual
cities, where 7,, = 1 is a tenable normalization. To aggregate to the group level,
I use the flow-weighted average of bilateral costs for moves across cities within the
same group to set the group-level 7,,,,. So in the 30 groups with only one city, we
still have 7,,,, = 1, but in the 4 groups with multiple cities, we have 7,,, > 1. With
the group-level own cost 7,,,,, I then compute the group-level bilateral cost 7,,; using
the formula in (18) while maintaining the assumption of symmetry, where the flows
are now summed across groups.

—2elnty,; =1In (,um-,um> , (19)

Set general human capital investment parameters, {4, p, 3,7, Qn}

As highlighted in Section 2, my framework embeds the classic model of general
human capital investment from Ben-Porath (1967) into a spatial general equilibrium.
A large empirical literature has estimated structural versions of the Ben-Porath
model.”? Insofar as I can demonstrate that the additional structure of my framework

50Consider that the likelihood of marriage, child-rearing, and homeownership are all typically
increasing from young adulthood through at least middle age, and each increases the cost of moving.
See, for example, Mincer (1978) on family ties in general, Costa and Kahn (2000) on the colocation
problem of married couples specifically, and Oswald (2019) on homeownership. Kennan and Walker
(2011) estimate a positive direct effect of age on moving costs in addition to its effect on moving
decisions through their human capital channel.

5'Head and Ries (2001) first proposed an index of this sort to back out a measure of trade
costs from observed trade flows. Taking averages across ages and relative productivities and later
aggregating to groups ensures that the matrix of flows is dense and limits concerns about overfitting
(Dingel and Tintelnot, 2021).

52An even larger literature estimates the Mincer (1974) model, which was originally derived as
an approximation of the Ben-Porath model. Heckman, Lochner, and Todd (2006) surveys this
literature.

26



is consistent with or independent of the Ben-Porath model, I can credibly use these
estimates to calibrate some of my parameters.

My calibration draws most heavily from three sources. The first is Browning,
Hansen, and Heckman (1999), which reviews structural estimates of the Ben-Porath
model. The second is Heckman, Lochner, and Taber (1998), which extends the
Ben-Porath model to allow for an up-front choice of total schooling (high school vs.
college) and coarse heterogeneity in initial stocks of human capital (four groups).
The authors estimate their model using data on white males in years 1979-1993
from the NLSY. The third is Huggett, Ventura, and Yaron (2006), which extends the
Ben-Porath model to allow for a continuous distribution of initial stocks of human
capital. The authors estimate their model using data on males from the PSID 1969-
1992 family files. Collectively, these three sources demonstrate that the Ben-Porath
model is consistent with observed patterns such as the concentration at young ages
of time allocated to skill acquisition and the steepness of age-earnings profiles for
people who choose high amounts of schooling. Moreover, when augmented to include
worker heterogeneity, the Ben-Porath model does well in replicating trends in mean
earnings and measures of earnings dispersion and skewness over most of the working
life-cycle for a typical cohort as the cohort ages.”

Recall a typical worker’s decision problem as specified in the Hamilton-Jacobi-
Bellman equation (12). She takes city aggregates and the pace of growth as given,
so in quantifying her investment problem we are free to consider these variables as
exogenous. The horizon of her decision problem is determined by her lifespan, A,
and her discount rate, p. I set A = 40, so the lifespan accords with ages 20 through
59. This choice is motivated by a few considerations. First, within this age band,
a uniform age distribution is an adequate assumption: in the 2010 Census, there
were roughly 20 million people in each five-year age bin up to age 60. Second, near
the full Social Security retirement age of 67 there is a substantial fall in labor force
participation that occurs for reasons not considered in my model. This suggests
using an earlier terminal age. Third, it is consistent with Huggett, Ventura, and
Yaron (2006), who emphasize the relative lack of data availability in the PSID
outside this age range. For the discount rate, I set p = 0.10, which exceeds the typical
annual discount rate set in most macroeconomic models, to account for missing
curvature in the worker’s flow utility function.”® In particular, with linear utility,
workers may be willing to accept negative flow payoffs in exchange for sufficient wage

53 Huggett, Ventura, and Yaron (2006) show that heterogeneity in learning ability, not just initial
human capital, is required to generate a positive trend in earnings dispersion in their model. This
is not true in my framework because of heterogeneity in returns to learning across locations: if
higher-skilled workers sort sufficiently into vibrant environments, my model can generate a positive
trend in earnings dispersion without incorporating individual heterogeneity in learning ability.

5 Tuggett, Ventura, and Yaron (2006) use linear utility with the equivalent of p = 0.04, but they
calibrate to much lower wage growth (0.14% per year) and a positive depreciation rate (1.14% per
year). Heckman, Lochner, and Taber (1998) use p = 0.05 and zero depreciation but specify an
isoelastic utility function with coefficient of relative risk aversion equal to 0.9.
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growth.”® A higher-than-usual discount rate stands in for a finite intertemporal
elasticity of substitution to curb this behavior.”®

Her investment technology is characterized by two elasticities: [, which governs
the marginal productivity in investment of a worker’s current human capital, and
7, which governs that of her time. I set § = 0.8, which accords with the best-
fitting parametric model estimated by Huggett, Ventura, and Yaron (2006, Table 2,
Panel B, Column 4) and falls just shy of the estimates in Heckman, Lochner, and
Taber (1998, Table 1).°” With panels of only a few thousand workers at most, few
studies using U.S. data can reject the neutral Ben-Porath model in which n = 3.
One implication of this neutrality, however, is that human capital accumulation
raises the marginal cost of human capital investment and the marginal productivity
of human capital investment in the same proportion. It follows that the optimal
accumulation would be independent of z. This contradicts evidence from De la Roca
and Puga (2017) on a much larger panel of Spanish workers that the additional value
of experience in bigger cities is stronger for those with higher ability. With this in
mind, I set n = 0.7, which still falls within the range of estimates reviewed by
Browning, Hansen, and Heckman (1999).

The preceding discussion passed over two sources of potential misspecification.
First, alongside her investment, the typical worker in my model makes a simul-
taneous migration decision. Notice, though, that her migration decision interacts
with her investment decision only through the former’s effect on the scale of the
marginal value of human capital, d,v,(a,x). That effect is itself mediated by the
arrival rate of migration opportunities, A. Accordingly, I expect the misspecification
error from ignoring this interaction to be small. Second, the worker’s investment
technology includes the vibrancy of her current city, so it is %acmﬁ X,}b_ﬁ rather than
simply %acgcﬂ.58 This difference would be wholly irrelevant if there were a uniform
vibrancy X,, = X across locations, in which case the missing X' ~# would simply be
subsumed in the estimate of &, or if there was no sorting on skill across locations,
in which case matching worker panels pooled across locations would still yield an
unbiased estimate of 8. The main concern is that workers with high levels of human
capital sort (albeit imperfectly) into more vibrant places, in which case existing
estimates of 5 would be biased upward. With that in mind, I verify that my main
results are robust to using lower values for 5 and 7.

55This occurs, for example, if a worker sets o = 1 because she must still pay the urban cost.

56The goal is not necessarily to rule out this behavior, however, because accepting negative flow
payoffs in exchange for sufficient wage growth is itself a form of borrowing and saving that is
otherwise precluded in this model.

STHeckman, Lochner, and Taber (1998) estimate 8 = 0.832 (S.E. 0.253) for high school and
B =0.871 (S.E. 0.343) for college-educated workers.

58The restriction that the elasticity on the vibrancy is 1—/3 rather than a generic B is mostly
immaterial: one can simply toggle the value of (, the inverse elasticity of vibrancy with respect
to city size, to affect the strength of city characteristics in enhancing workers’ human capital
investments.
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It remains to parameterize the initial human capital density for each city, @n
Huggett, Ventura, and Yaron (2006) demonstrate that a Ben-Porath model with
a lognormal distribution of initial human capital stocks provides a good fit of key
patterns in the U.S. earnings distribution. Accordingly, I set ¢, to be a discretized
lognormal density. I truncate the distribution at its fifth and nlnety—ﬁfth percentiles
to ensure that its support lies within a finite state space and has a strictly positive
minimum. I set its coefficient of variation to 0.468 from Huggett, Ventura, and
Yaron (2006, Table 5, Panel B, Column 4), which corresponds to a neutral human
capital model with elasticity § = 0.8 and accumulation starting at age 20. To
set the mean in each city, I turn to Heckman, Lochner, and Taber (1998, Table
2), who estimate the initial level of human capital separately for high-school and
college-educated workers. They estimate an initial premium of up to 50% for college-
educated workers. I use the weighted average of these initial levels, weighting by the
college share in a given city from the 2011-15 ACS five-year estimates, to set the
mean for that city up to a choice of scale, which will be estimated later.”” Finally,
I set the total mass of entrants in each city to match observed population shares of
15-19 year olds in the 2010 ACS one-year sample.

Estimate {«, (, Zscale; In, Bn,Pn, K} using a minimum distance estimator

The remaining parameters are estimated jointly to minimize the distance between
the model and the data regarding five sets of moments: (i) panel estimates of the
returns from big city experience from Duranton and Puga (2022, Table 2), (ii) total
employment of wage and salary workers in each city per the 2013 BEA Regional
Accounts, (iii) the total wage bill in each city per the 2013 BEA Regional Accounts,
(iv) constant housing expenditure shares across all cities, (v) a 2% annual growth
rate.”’ Although the parameters are estimated jointly, their identification is rather
intuitive.

The first three parameters, {«, ¢, Zscale }, are primarily identified by the panel
estimates from Duranton and Puga (2022, Table 2). Duranton and Puga (2022) fol-
low De la Roca and Puga (2017) in first estimating an individual earnings regression
on a panel of workers from the restricted-access NLSY Geocodes (1979-2012):

lnyth =ap+a; +a+ Zn bne‘ZLt + Cgb + 5%,153

where a,, is a city fixed effect, a; is a worker fixed effect, a; is a time fixed effect,
el is the experience acquired by worker j in city n up until time ¢, C/ is a vector

59Previous estimates suggest that sorting on unobserved ability is negligible after controlling for
education (Baum-Snow and Pavan, 2012; De la Roca, Ottaviano, and Puga, 2023).

50Tn static spatial frameworks with a discrete number of agent types, it is common for there to
be a one-to-one mapping from the observed data on the endogenous variables of the model to the
structural fundamentals of the model. This mapping can then be inverted to identify the unique
values of the estimated structural fundamentals that exactly rationalize the observed data as an
equilibrium (Redding and Rossi-Hansberg, 2017). Such is not the case here because the endogenous
variables depend on the whole underlying spatial distribution of human capital, which is unknown.
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of time-varying individual and job characteristics, the scalar b; and the vector b are
parameters, and €/, is an error term.®! They estimate that, controlling for worker
and city characteristics, a year of experience in a city of more than 5 million residents
(based on 2010 Census counts) yields 1.14% higher earnings than would a year in a
city with between 2 and 5 million residents.’” In my model, this corresponds to the
moment condition

1-p

1
Xt \ 7 L Tomil
( ml) = [ ZomiltomilS = 1.0114,
Xomil

[
L i Tomil ¢

where X5.,; is the city size-weighted mean vibrancy among cities with more than
5 million residents and Xs.; is that among cities with between 2 and 5 million
residents. Given a value for 3, we can think of this moment as primarily identifying
the shape parameter of vibrancy, .

In the second step, Duranton and Puga (2022) regress the estimated city fixed
effects on city population to obtain a value for the static agglomeration elasticity,
a:

anp = aln L, 4 &,.

Because the city fixed effect captures local fundamentals that may be correlated with
city size, they instrument for city size with a number of geographic characteristics
and historical population values.®> Their estimate is & = 0.0452. In my model,
estimating the city fixed effect a, alongside individual and time fixed effects gives
it the structural interpretation a, = In (7, L), which is the log “wage” for human
capital in city n. Although the fundamental productivity 7;, may be correlated with
city size L, instrumenting for city size as Duranton and Puga (2022) do suffices to
identify «. It follows that a can actually be identified outside the MDE scheme as
a=a = 0.0452.

In the final step, Duranton and Puga (2022) re-estimate the second regression
after adding to the left-hand side the differential value of local experience in each
city, valued at the average local experience, é:

an + bpe = (@ +<S)In Ly, + ep.

5'Worker controls comprise firm tenure and its square along with indicators for two-digit sector
and occupation. To ensure enough observations per city, Duranton and Puga (2022) group cities
by size. Above 2 million residents, each city is in a group by itself, as I have done. Below 2 million
residents, their groups are strictly finer than mine. Specifically, between 800,000 and 2 million,
groups are incremented by 100,000. Between 600,000 and 800,000, they are incremented by 50,000.
Finally, between 75,000 and 600,000, they are incremented by 25,000.

52Gee Duranton and Puga (2022, Table 2, Column 3).

53Specifically, they use (i) the percentage of the area within 30-kilometers of the city center that
has slopes greater than 15% and the percentage covered by wetlands, (ii) the inverse hyperbolic
sine of city population in 1850 and 1920, (iii) the inverse hyperbolic sine of distance to the Eastern
Seaboard, and (iv) the number of heating degree days per year.
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This gives an estimate of the dynamic agglomeration elasticity, & 4+ ¢. For average
experience € = 8.4, they estimate & + ¢ = 0.0770, so ¢ = 0.0318. We can use this
estimate to identify the scale of human capital, Z¢ca1e, because the static component
of the city size earnings premium, a,, is independent of this scale but the dynamic
component, Bn, is not.

Identification of the remaining scale parameters goes roughly as follows. For
a given wage bill, variation in employment identifies local amenities, B,,, which are
restricted to have a mean of one. Similarly, for given employment, variation in the
wage bill identifies local exogenous productivity, T,,. For a given local productivity,
T,, I set the scale of local urban costs, p,, such that the expenditure share on local
accommodations is constant across cities at 62% of potential income (Diamond,
2016).9* Finally, the scale of the returns to time invested in human capital, &, is
identified through Equation (17). This parameter can be separately identified from
the scale of human capital, zgcale, because Equation (17) is invariant to this scale.

3.3 Quantitative predictions

The quantified model matches its aggregate targets exactly: city employment, city
value added from labor, and aggregate growth are all as in the data. In particular,
city employment, which is my measure of city size, follows a Pareto distribution and
approximates Zipf’s law, as demonstrated in Figure 1. The New York metropolitan
area is the largest with more than 9 million workers in 2013, followed by Los Angeles
with just under 6 million and Chicago with roughly 4.5 million. The four groups
of small cities have mean employment of, roughly, 900,000; 600,000; 325,000; and
90,000, respectively.

Table 1 collects the parameter values that do not vary by location. The next
section will discuss the city fundamentals.

City fundamentals and vibrancies

Figures 2-5 show the city fundamentals and vibrancies implied by my quantitative
procedure. On each map, each marker refers to an MSA in that location. The size of
each marker is proportional to total equilibrium employment in that city. The color
of each marker varies with whatever city value is being shown, with higher values
always represented by darker colors. Cities assigned to the same group are forced to
be identical, so their markers will be of the same size and color by definition. Next
to each map, a scatterplot shows the values for the thirty largest cities against their
log size.

54In particular, p, = (O.62)Tan‘f€". That expenditure on housing (and non-tradables more
broadly) varies little across cities is consistent with evidence from Davis and Ortalo-Magné (2011),
Moretti (2013b), and Diamond (2016). Along the baseline BGP, average time spent working exceeds
95%, so we lose little by setting expenditure shares relative to potential income instead of actual
income.
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Figure 1: Log rank plotted against log city employment in 2013 for the 34 city groups in the
sample. For groups with multiple cities, the rank shown is the median rank in the full distribution
of its constituent cities.

Figure 2 shows the local fundamental productivity, T},, in each city. Unsurpris-
ingly, fundamental productivity is positively correlated with size, because productive
places attract workers. That said, cities like San Francisco, Washington, and Boston
stand out relative to their size. Variation in 7T, captures variation in local institu-
tions, infrastructure, and capital stocks in general, but it is also how the model
rationalizes pre-existing clusters like Silicon Valley or Boston’s Kendall Square and
Route 128.

Figure 3 shows the scale of urban costs, anf{L, in each city. Consistent with
well-known patterns in the data, big cities are more costly, accounting for both higher
rents and higher commuting costs.?> Some of the most fundamentally productive
cities, like San Francisco, are also the most expensive for two reasons. First, many
of the most productive U.S. cities are also the most restrictive for urban land use,
which translates into a high congestion elasticity, 6,. Second, in order to match
a constant budget share of urban costs across cities, p, scales linearly with T,
in the quantitative procedure. This is a natural relationship, though, insofar as
urban costs partly capture the opportunity costs of commuting, which vary with
the average wage in the city.

Figure 4 shows the local amenity, B,,, in each city. Among the largest cities,
warm-weather sites like Los Angeles, Miami, and Dallas stand out as having high
amenities. Weather is clearly not the lone determinant, though: average amenities

65See, among others, Combes, Duranton, and Gobillon (2019) and the review by Duranton and
Puga (2020).
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Figure 2: The map in the left panel shows the local fundamental productivity, T),, of each of the
378 cities represented in the model. The scatterplot in the right panel shows, for the largest thirty
cities, the level of each city’s fundamental productivity against the natural log of its size.
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Figure 3: The map in the left panel shows the local scale of urban costs, P, = p,L2", of each of
the 378 cities represented in the model. The scatterplot in the right panel shows, for the largest
thirty cities, the natural log of each city’s urban cost against the natural log of its size.
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Table 1: Quantification Results

Param. Description Value Source

€ Migration elasticity 3 Diamond (2016)

A(a) Mobility rates by age [0.076,0.266] 2011-15 ACS Migration Flow files

p Discount rate 0.10

A Maximum age 40 Huggett, Ventura, and Yaron (2006)
B Investment elasticity of own skill 0.8 Huggett, Ventura, and Yaron (2006)
n Investment elasticity of time 0.7 Browning, Hansen, and Heckman (1999)
«a Static agglomeration elasticity 0.045 Duranton and Puga (2022)

¢ Shape of vibrancy 6.228 MDE

Tscale Scale of human capital 49.127 MDE

R Scale of investment technology 0.139 MDE

in smaller cities are substantially lower than those in big cities, regardless of cli-
mate. This suggests that something like consumption amenities—say, the quality
or quantity of restaurants, entertainment, community spaces, and so on, which are
typically higher in bigger cities—are also being captured by B,. Consistent with
this hypothesis, I find that, excepting San Francisco, my measure of amenities is
positively correlated with the total amenity value estimated by Albouy (2016), who
infers this value from U.S. data on wages, housing rents, and taxes through the lens
of a spatial equilibrium model.°® While Albouy (2016) infers that San Francisco
has the highest total amenity value among U.S. cities, though, my measure ranks
it poorly relative to other large cities. This is likely due to my method of inferring
urban costs, which enforces a constant expenditure share on local accommodations
across all workers and cities. To rationalize San Francisco’s relatively small size
given its high fundamental productivity, then, my procedure infers low amenities
there.
1

Finally, Figure 5 shows the vibrancy, X,, = L Ty, in each city. Given the
parameter values in Table 1, the variation in city size dominates that in skill com-
position, so vibrancy is strongly positively correlated with city size. Nevertheless,
differences in skill composition are still important: mean human capital in New York
exceeds that in Detroit, for example, by nearly 9%. One city—Riverside, CA—sticks
out as especially vibrant for its size. This is so despite a relatively low mean initial
level of human capital per its observed college share and low fundamental produc-
tivity per its observed mean wage. As I explain in the next section, Riverside’s high
vibrancy is the result of a low opportunity cost of learning coupled with migration
frictions.

56 For groups with multiple cities, I use the population-weighted mean of his total amenity value.
Note that Albouy (2016) defines cities based on the 1999 OMB definitions of metropolitan statistical
areas, so there is some unavoidable mismatch between our results. Excepting San Francisco, the
raw correlation between our amenity values across my 34 city groups is 22%.
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Figure 4: The map in the left panel shows the local amenity, B,, of each of the 378 cities
represented in the model. The scatterplot in the right panel shows, for the largest thirty cities, the
level of each city’s amenity against the natural log of its size.
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Figure 5: The map in the left panel shows the local vibrancy, X,, = LS %, ¢, of each of the 378
cities represented in the model. The scatterplot in the right panel shows, for the largest thirty
cities, the natural log of each city’s vibrancy against the natural log of its size.
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Worker decision rules

In Figures 68, I turn to workers’ decision rules. Each figure comprises four panels,
one for each of four selected ages throughout the life cycle. Within each panel, I plot
the relevant function in each city across the range of relative human capital levels
that lie within the support of the stationary distribution. To limit visual clutter, I
highlight two cities—New York (blue) and Detroit (orange)—and show the rest in

gray.

a=5 a=15

. 0.3 N 0.3
8 3 New York
\% E; Detroit
© 0.2 © 0.2
&b &b
8 |
a =
—~ —~
BRI £o1
] <]
| e
= =

0 0

40 60 80 100 40 60 80 100
Relative skill, = Relative skill, x
a=25 a=35

03 03
8 8
) X
© 02 © 0.2
6D 6D
g g
g g
z g
go1 go1
(] (<]
£ E
= =

0 0

40 60 80 100 40 60 80 100
Relative skill, = Relative skill, =

Figure 6: Each of the four panels plots the optimal time allocated to learning across relative
productivity levels for a different age, identified in the title. There are 34 lines in each panel, one
for each city group, with two cities highlighted: New York (blue) and Detroit (orange). All other
cities are plotted in gray to save on visual clutter.

Figure 6 shows the optimal investment rate, o,(a,z). As demonstrated in
Proposition 1, the optimal investment rate is non-increasing in both age and rela-
tive human capital within a given city. This is consistent with the observed con-
centration at young ages of time allocated to skill acquisition (Mincer, 1974, 1997).
Across cities, however, the investment rate varies ambiguously: larger cities gener-
ally feature a higher opportunity cost of investment because they afford higher flow
utility per unit of human capital, BT, L%, but they also feature higher returns to
investment because they have higher vibrancy, X,,. Relative to those in most cities,
investment rates in New York are high, whereas those in Detroit are middling. In-
vestment rates are especially high in one particular city: Riverside. This is because

36



both its amenity, Bgv, and its fundamental productivity, Tk, are quite low for its
size, but its vibrancy is, if anything, high for its size. As such, the model predicts
that workers in Riverside would invest relatively heavily in their human capital so
long as they are stuck in a low-amenity, low-productivity environment.

Figure 7 shows the optimal accumulation rate, hy,(a,z) = %[an(a, )P X P
Although a worker’s optimal investment rate decreases with her relative human
capital, her optimal accumulation rate does not necessarily decrease because higher-
skilled workers are also better learners. Because 1 < 3, her optimal accumulation
rate is in fact increasing with her relative human capital. Nevertheless, her accu-
mulation declines with age as her investment rate declines. Across cities, workers
generally accumulate human capital more quickly in more vibrant places, consistent
with the moments I matched from Duranton and Puga (2022, Table 2). River-
side again stands apart because of its especially high investment rates for its size.
Otherwise, cities are ranked roughly in order of their size, with New York at the
top.
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Figure 7: Each of the four panels plots the optimal accumulation of human capital, h,(a,z) =
k[on(a, )]z X278, across relative productivity levels for a different age, identified in the title.
There are 34 lines in each panel, one for each city group, with two cities highlighted: New York
(blue) and Detroit (orange). All other cities are plotted in gray to save on visual clutter.

Figure 8 shows the optimal drift of relative human capital, d,,(a, z) = hy(a,z)—
~vx. Although a worker’s absolute level of human capital, z, does not depreciate,
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her relative level, x, does depreciate as the economy grows at rate . Her relative
level only increases on net if her accumulation outpaces this shift in the distribution.
The young typically invest heavily enough in their human capital to gain relative
to the trend, as evidenced by the lines in the top two panels lying largely above
the dashed line at zero. Such is not the case for the old, who let their relative level
depreciate even still five years before retirement, as seen in the last panel. Regardless
of age, accumulation relative to the trend is decreasing. Putting all of this together,
the lines in Figure 8 allow us to visualize the components of the growth rate in
Equation (17). For each relative level x within the support of the density ¢, the
growth rate is the number « that makes the average drift d,,(a,z) across all ages
and cities—that is, across all panels and all lines within a panel-—equal to zero.
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Figure 8: Each of the four panels plots the optimal drift of human capital, d,(a,z) =
k[on(a, )]z X278 — yz, across relative productivity levels for a different age, identified in the
title. There are 34 lines in each panel, one for each city group, with two cities highlighted: New
York (blue) and Detroit (orange). All other cities are plotted in gray to save on visual clutter.

Moreover, notice that at any age a in any city n, the value z,, at which
dn(a,Zqn)=0is a sink: a worker will continue to accumulate on net up to Z,,, but
past that level she would let her relative human capital depreciate. This suggests
that the detrended stationary distribution has finite support, as we will confirm
below. Contrast this result with other idea-based growth models that require a
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distribution with a fat tail or an external source to sustain growth.’” The key
difference here is that human capital accumulation occurs by producing potentially
new knowledge, not simply by imitating others’ knowledge, so steady-state growth
can occur despite there being only finite knowledge in the economy at any particular
date.
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Figure 9: Each of the four panels contains a heatmap of annual flows (in millions of workers) across
all bilateral pairs of the 34 city groups for a different age (in order left to right, then top to bottom:
a=5,a =15 a = 25 a = 35). Rows represent the origin of a flow; columns, the destination.
Own flows are omitted from the color scale because they would mask all other variation. Cities are
ordered by size from top to bottom and left to right. Migration rates are not cross-tabulated with
relative productivity in this figure.

Figure 9 shows the optimal annual flows from each origin to each destination,
Aa) Ly (a)pni(a, x), at four select ages, a € {5, 15,25,35}. Rows represent the origin
of a flow, with origin city groups ranked from top to bottom by the size of their
constituent cities. Columns represent the destination of a flow, with destination city
groups ranked from left to right by the size of their constituent cities. With any
given year, workers are far more likely to stay in their current city than move away,

57See, for example, Lucas and Moll (2014) and Perla and Tonetti (2014).
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so I omit the flows along the diagonal from the color scale to highlight the variation
across destinations. Each panel has the same color scale, so looking across panels
(first left to right, then top to bottom) we observe from the darkening palette that
the young are more likely to migrate. This is due largely to the decline in frequency
of migration opportunities, A(a), as workers age, but also in part to the decline in
the value function, v;(a,x), relative to the size of the bilateral migration frictions,
Tni, as workers age. With any given panel, flows below the diagonal run from smaller
to bigger cities. Young workers (first panel) move on net to larger cities, with total
flows below the diagonal exceeding those above the diagonal, albeit only by 2%. A
particularly strong channel runs from Riverside to its larger neighbor, Los Angeles,
but also to its smaller neighbor, San Diego, both of which have better fundamentals
than Riverside.

City skill and age distributions

Each city’s human capital density inherits its initial shape and mass from its dis-
tribution of entrants, ¢ , which is lognormal with a city-specific mean and mass
as described in Section 3 2. In solving for the density as a cohort ages, however,
recall that I proceed nonparametrically, simply following the evolution implied by
the Kolmogorov forward equation. Nor do I target any moments of the distribution
except the total mass of workers in each city.

Nevertheless, the resulting distributions are quite reasonable. Figure 10 shows
the density of human capital within each city. Looking across panels, the density
in each city first shifts to the right as a cohort ages and accumulates human cap-
ital. Near the end of the working life, the right tail recedes as workers let their
relative human capital depreciate. These patterns are consistent with the concavity
of the cross-sectional earnings distribution targeted in the human capital literature
(Mincer, 1974).

Within any given panel, the relative placement of the lines indicates which
cities are more or less skilled. At any age, for example, New York is not only larger
than Detroit, because the blue line lies above the orange one, but it is also more
skilled, because relatively more of its mass is in the upper range of the supported
skill levels. Excluding Riverside, which has an artificially high mean level of relative
skill as we have discussed above, the overall most skilled cities are, in order, New
York, Los Angeles, Washington, Chicago, Boston, and San Francisco. The least
skilled are Sacramento, Cincinnati, Cleveland, Tampa, and San Antonio.

Figure 11 shows the marginal age density in each city normalized by the city’s
total population share, ¢, (a) = é [ ¢n(a, z) dx. Normalizing by population share
allows us to compare age demographics across cities on a common scale. A key dis-
tinction is between cities for which the marginal age density slopes up and those for
which it slopes down. In an environment without migration frictions, an upward-
sloping density here would imply that a particular city is disproportionately pre-
ferred by the old; a downward-sloping one, preferred by the young. But with mi-
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Figure 10: Each of the four panels plots the density ¢, (a,z) across relative productivity levels
for a different age, identified in the title. There are 34 lines in each panel, one for each city group,
with two cities highlighted: New York (blue) and Detroit (orange). All other cities are plotted in
gray to save on visual clutter.

gration frictions, the proper intuition is actually that the places most preferred by
the young are those with the steepest upward slopes at young ages. These are the
cities to which young people flock at their earliest migration opportunities. The
marginal density of New York, for instance, is upward-sloping. The seven steepest
lines up to a = 10 (that is, those starting below 0.02) are Charlotte, Washington,
San Francisco, Minneapolis, Seattle, Denver, and Boston. These cities are relatively
productive and skilled even controlling for size. Cities with the steepest declines up
to a = 10, by contrast, are Riverside, Sacramento, San Antonio, Los Angeles, and
Detroit. Two of these five cities, Sacramento and San Antonio, are among the five
least-skilled cities in the economy, and Detroit and Riverside have poor fundamen-
tals relative to other cities of similar sizes. These are the places that young people
leave at their earliest opportunities. Places that are desirable to the young are also
generally desirable to the old, which is why nearly all of the lines in Figure 11 are
monotonic. Still, the slope for every city declines with age, consistent with the
declining mobility of workers as they approach retirement.
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Figure 11: This figures plots the marginal density of age within each city, normalized by the city’s
total population share. There are 33 lines in the figure, one for each city group except Riverside,
with two cities highlighted: New York (blue) and Detroit (orange). All other cities are plotted in
gray to save on visual clutter. Riverside is omitted because it decreases convexly from 0.0458 to
0.0141, which means it would have dominated the variation across the other lines if shown on the
same scale.

An example individual history

Following De la Roca and Puga (2017), a final helpful lens through which to view
the predictions of the model is to plot the evolution of earnings for workers in cities
of different size. Consider a worker born with mean initial human capital in Detroit
that will receive an opportunity shock immediately upon entry at age 20 (a=0)
and another after 10 years of experience (a=10).® At each opportunity, she has a
strictly positive probability of moving to any city in the set A, but let us focus on
two options: Detroit, with between 2 and 5 million residents, and New York, with
more than 5 million. At her first opportunity, the worker can either stay in Detroit
or move to New York. At her second opportunity, if she had previously moved to
New York, she can remain there or return to Detroit; if she had stayed in Detroit,
let us suppose that she chooses to stay there again.

Accordingly, we consider three potential paths for this worker, plotted in Fig-
ure 12. Along the first path, shown in solid orange, the worker is always in Detroit.
Along the second, shown in solid blue, the worker immediately moves to New York
and remains there. In the third, shown in solid blue up to age 30 (a=10) and there-
after in dashed orange, she first moves to New York but later returns to Detroit. The

580f course, these shocks are unbeknownst to her, but with a continuum of agents we observers
are assured to find some worker with this realization of shocks.
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left panel shows the evolution of her earnings premium relative to always working
in Detroit for each of the three potential paths (hence why the solid orange line is
at zero). The right panel shows the same for her underlying level of human capital.
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Figure 12: This figure illustrates three possible sample paths of a worker born with mean initial
human capital in Detroit that receives opportunity shocks at ages 20 (a = 0) and 30 (a = 10). The
left panel plots her earnings premium relative to always staying in Detroit against her age; the right
panel, her relative productivity against her age. The solid orange line represents the path in which
she chooses to stay in Detroit at both opportunities. The solid blue line represents her path after
age 20 if she chooses to move to New York at her first opportunity and remain there. The dashed
orange line represents her path after age 30 if, after moving to New York at age 20, she chooses to
return to Detroit at her second migration opportunity.

For the version of the worker in New York, her profile of relative earnings has an
intercept and a slope component. The intercept captures the percentage difference
in earnings between the version of her working in New York and that of her working
in Detroit. This is calculated as the percentage difference between her “wage” in
New York, LY., and that in Detroit, LZ.., after controlling for the fundamental
productivity in each location, since we are interested in the portion of the earnings
premium that varies with city size. The slope component captures the rising gap
in earnings between these versions of herself as they each accumulate experience in
a different city. This is calculated by tracing out her accumulation in New York,
hxy(a,x), and that in Detroit, hpgr(a,z). Figure 12 shows that a worker in New
York initially earns 6% more than a worker in Detroit, controlling for differences in
fundamental productivity, and this gap nearly doubles, so that after 10 years the
difference in earnings reaches almost 11%.

The dashed lines in Figure 12 illustrate the portability of the learning advan-
tages of bigger cities. Up until year 10, the relative earnings profile of the version
of our worker who begins in New York and then relocates is the same as that of the
version who always works in New York as captured by the solid blue line discussed
above. At that point, she relocates to Detroit, and her relative earnings drop as a
result of the Detroit wage replacing the New York wage. Nevertheless, the worker
is able to retain roughly 5% higher earnings after relocating to Detroit as a result
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of the more valuable experience she accumulated over 10 years in New York.

The right panel of Figure 12 demonstrates why this occurs. The same worker
accumulates human capital at a faster rate in New York than she would in Detroit,
so the version of herself that moves to New York has, after 10 years of experience,
accumulated roughly 5% more human capital than the version of herself that stayed
in Detroit. The final version of herself that moves back to Detroit after 10 years will
therefore have a permanently higher level of human capital than the version that
had always stayed in Detroit.

4 Policy exercise

As an application of the model, I now consider a commonly-proposed place-based
policy: relaxing land use regulations in the “brain hubs” of New York and San
Francisco. This exercise is subject to an important caveat: the effect of the policy is
stated as a comparison across balanced growth paths without regard for the speed
or cost of transition to the new path. In the presence of migration frictions, the
transition would be interesting to study, but computing it falls outside the methods
developed in this paper.

4.1 Relaxing land use regulations in the Brain Hubs

Recall that the congestion elasticity, 6, is set to match estimates from Saiz (2010)
of the inverse housing supply elasticity in each city. This elasticity has two main
determinants: land availability and land use regulations as measured by the Whar-
ton Residential Land Use Regulatory Index (WRI).%? According to the WRI, land
use restrictions in New York and San Francisco are among the tightest in the coun-
try. The elasticity of housing supply due to land use regulations in New York is
at the ninety-sixth percentile of the nationwide distribution of the housing supply
elasticity; that in San Francisco, the ninety-ninth percentile.

In this policy exercise, I focus on a change in the congestion elasticity, 6,,
holding fixed the scale of urban costs, p,, in both New York and San Francisco.
Specifically, I set land use regulations in both cities equal to the level observed in
the median US city. I then recompute the congestion elasticity in each city, holding
fixed the amount of land available.”’ With relaxed land use regulations, both cities
can accommodate more workers at the same level of urban costs.

Figures 13-15 show how city sizes, costs, and vibrancies change. Unsurprisingly,
New York and San Francisco grow in size, with New York expanding by 16.9% and
San Francisco by 4.9% as shown in Figure 13. All other cities shrink, but all do so

59The WRI is based on detailed surveys of municipalities in 2007. It is designed to have a zero
mean and unit standard deviation. See Gyourko, Saiz, and Summers (2008) for further details.

"Hsieh and Moretti (2019) and Martellini (2021) consider similar counterfactuals in static or
stationary settings.
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by less than 3%. Most of the reallocation is away from large cities in the middle of

the country, like Atlanta, Kansas City, and Dallas, or from cities close to New York,
like Philadelphia.

NY

AL (%)

Figure 13: The left panel maps each city’s percentage change in population relative to the com-
petitive allocation. The right panel plots that percentage change against the natural log of each
city’s population in the competitive allocation.

One consequence of this spatial reallocation is that urban costs fall everywhere,
as shown in Figure 14. The inflows to New York and San Francisco, though large,
are small enough so as not to offset the direct reduction in costs from the policy.
Meanwhile, all other cities experience reduced congestion as they shrink.
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Figure 14: The left panel maps each city’s percentage change in total urban cost relative to the
competitive allocation. The right panel plots that percentage change against the natural log of each
city’s urban cost in the competitive allocation.

Another consequence is that the brain hubs become more vibrant, as shown
in Figure 15. New York becomes 13.4% more vibrant; San Francisco, 2.9% more
vibrant. Unlike with size, though, which decreases for all other cities in response
to the policy, the vibrancy of some other large cities also increases. Philadelphia,
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Miami, and Boston each become at least 1% more vibrant. Additional gains cluster
along the East Coast (Washington and Baltimore), in Southern California (Los
Angeles, Riverside, and San Diego), and in Central Florida (Tampa and Orlando).
For these cities to shrink and yet become more vibrant, it must be that they are
either attracting or producing more human capital. The same must be true even
for the brain hubs: holding the skill distribution fixed within each city, one would
expect a 1% increase in size to yield only a %% increase in vibrancy.
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Figure 15: The left panel maps each city’s percentage change in vibrancy relative to the compet-
itive allocation. The right panel plots that percentage change against the natural log of each city’s
vibrancy in the competitive allocation.

We can confirm this by examining the underlying skill distributions in different
cities. Figure 16 shows the skill distribution in three cities: New York, San Francisco,
and Detroit. The solid lines show the three distributions along the baseline BGP. The
dashed lines show the three distributions along the counterfactual BGP. As a result of
the policy, we see a pronounced rightward shift in New York’s distribution, especially
at older ages. A much less pronounced rightward shift also occurs in San Francisco.
Detroit, which was not targeted by the policy, sees essentially no change in its skill
distribution. Changes in other untargeted cities range from the imperceptible to the
slightly noticeable in Philadelphia, which experienced the largest deviation between
its change in size (-2.42%) and change in vibrancy (+1.42%) of all untargeted cities.

The large shift in New York compared to the minimal shifts in untargeted
cities suggests that the response to the policy is not primarily through skill-biased
migration. A cheaper New York is not simply syphoning off high-skilled workers from
other cities. Instead, workers in New York must be accumulating human capital at
a faster rate. We see this in Figure 17, which shows the optimal accumulation,
hn(a,x), in the same three cities as before. The dashed blue line lies well above
the solid blue line, which means workers in New York earn much higher returns on
their human capital investments after the policy. The same goes for workers in San
Francisco, but to a lesser extent.

Despite the noticeable effects in New York, ultimately I find that relaxing land
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Figure 16: Each of the four panels plots the density ¢n.(a,z) across relative productivity levels for
a different age, identified in the title. There are 6 lines in each panel, two each for New York, San
Francisco, and Detroit. Solid lines denote distributions on the baseline BGP. Dashed lines denote
distributions on the counterfactual BGP.

use regulations in the brain hubs increases the aggregate growth rate only by 13
basis points to v®" = 2.13%. A few factors mitigate the aggregate effect. First, the
policy only induces moderate employment reallocation. New York and San Francisco
become cheaper and so attract more workers, but in general equilibrium this makes
all other cities cheaper, too, as they shrink, thereby attenuating the pull of the
brain hubs. Second, although human capital accumulation speeds up in the brain
hubs, the diffusion of this new knowledge is slowed by migration frictions. Freer
mobility would likely lead to larger gains. Nevertheless, this exercise demonstrates
that simply relaxing land use regulations in two cities could have a permanent,
positive effect on aggregate growth.
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Figure 17: Each of the four panels plots the accumulation h,(a,z) across relative productivity
levels for a different age, identified in the title. There are 6 lines in each panel, two each for New
York, San Francisco, and Detroit. Solid lines denote accumulations on the baseline BGP. Dashed
lines denote accumulations on the counterfactual BGP.

5 Conclusion

In this paper, I develop a quantitative spatial endogenous growth model in which
heterogeneous workers make forward-looking migration decisions and human capital
investments over the life cycle. Local externalities in human capital investment drive
both agglomeration and growth. I show that the growth rate depends on the spatial
distribution of human capital, making it sensitive to spatial policies.

I quantify the model such that it jointly rationalizes a host of empirical facts
about American cities in the cross-section and American workers over the life cycle.
City sizes approximately follow Zipf’s law, and bigger cities are generally more pro-
ductive, more expensive, and more skilled. Consistent with recent panel estimates,
workers learn more in big cities, and the young migrate disproportionately to bigger
and more-skilled cities because of this. All the while, the economy as a whole follows
a balanced growth path with 2% annual growth.

Using the quantified model, I evaluate a commonly-proposed place-based pol-
icy: relaxing land use restrictions in the “brain hubs” of New York and San Fran-
cisco. I find that, along the new balanced growth path, both cities are larger and
more skilled, with New York especially so. This is not primarily the result skill-
biased migration, as if the brain hubs simply syphoned off skilled workers from
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other cities. Instead, the rate of human capital accumulation in both cities increases,
meaning that the spatial policy helps produce more skilled workers. Ultimately, I
find that the aggregate growth rate for the entire economy increases by 13 basis
points in response to the policy.

I expect my framework to serve as a basis for future work. My framework is
well-suited to evaluate the long-run effects of policies that shift workers around the
urban system, like the $11 billion regional technology hub program funded through
the American Rescue Plan and the CHIPS and Science Act, which aims to create
“regional growth clusters” outside of the existing coastal hubs (EDA, 2021; CHIPS,
2022)."" Tt could also be used to estimate the long-run effects of remote work,
to reexamine the Great Divergence (Moretti, 2013a), or to trace out the effects of
place-based policies for macro-development (Duranton and Venables, 2018).

It would be particularly useful to extend my framework along several margins.
First, I abstracted from the consumption-savings problem because Ben-Porath work-
ers maximize the present value of earnings in the absence of a labor-leisure decision
and liquidity constraints. When workers face liquidity constraints, though, Bilal
and Rossi-Hansberg (2021) have argued that workers may treat their location as an
asset by moving to cheaper places with lower future returns as a form of borrowing.
Including a consumption-savings problem with liquidity constraints alongside the
migration and investment problems would allow for this effect. Second, I defined
vibrancy as a single index of knowledge at the city level to which resident workers
have continuous access, but one may consider how occupational propinquity or ur-
ban form affect the strength of knowledge spillovers or the frequency of face-to-face
interactions (Atkin, Chen, and Popov, 2022). Finally, I restricted my solutions to
balanced growth paths, but it would be useful to solve for the transition between
balanced growth paths in order to compute the speed and welfare effects of the
transition in the presence of migration frictions.

™! Atkinson, Muro, and Whiton (2019) and Gruber and Johnson (2019) advocate for this type of
policy in response to recent trends in the concentration of U.S. innovation-sector jobs.
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A.1 City structure and urban cost

This appendix provides microfoundations for my specification of urban costs. I build
on Behrens, Duranton, and Robert-Nicoud (2013) and Duranton and Puga (2015),
who extend the canonical monocentric city model to environments with heteroge-
neous workers. Relative to the canonical model, there are two main differences: (i)
utility will not equalize across all workers, only across those in the same group; (ii)
different groups will have different willingness to pay for the same location, so the
overall bid-rent curve will be formed by the upper envelope of the group-specific
bid-rent curves.

In each city, production takes place at a single point called the central business
district (CBD). On either side of the CBD there is a line comprised of identical
residences of unit length. Workers commute from their residence to the CBD at
a cost. The cost is in units of time, so commuting is more expensive for highly-
productive workers. In particular, I assume that commuting from a residence at
distance £ from the CBD requires 9,,¢* units of time, so the commuting cost for a
worker with productivity z residing at distance £ is (9,,T},)z¢’". The rent at distance
¢ in city n at date t is denoted 7, (¢, ).

Each worker chooses her residence by trading off commuting costs and land
rents. She is allowed to move freely within the city at every date, so her choice of
residence is static and separable from her dynamic decision problem specified in the
main text.”” Her objective is to minimize her total urban cost at each date, which

"The only concern would be if the worker’s time allocation is forced to a corner. This never
occurs in the quantified model.
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yields the Alonso-Muth condition
00Tzt~ = —0pr, (4,1). (A1)

A residential equilibrium at date t consists of a rent gradient r,(¢,t) and an assign-
ment function £, (z,t) such that the Alonso-Muth condition (A.1) holds for all (z, £)
and all workers are allocated to a residence.

The Alonso-Muth condition implies that rents fall with distance and that will-
ingness to pay for a residence at a given distance is increasing in human capital. It
follows from the second fact that workers will sort perfectly such that more produc-
tive workers will be closer to the CBD. With a slight abuse of notation, let G,,(z,t)
denote the marginal distribution of human capital in city n at date t and g,(z,t)
its density.” The supply of residential land between ¢ and ¢+ d¢ is simply 2d¢. For
a proposed assignment function £ with inverse £7!, there is a density g, (£71(€),t)

of residents with human capital between £~1(¢) and £L1(¢) — dﬁ:li;(e)dé. Equating
supply and demand yields the relationship

—1
(™00 e = 2t

which, by the inverse function theorem, simplifies to

dl(z) 1
dz ign(z,t).

Noting that the city edge will be at distance %Ln (), one can integrate this expression
over z to get the equilibrium assignment function

Ln(t)

Ln(z,t) = 5

[1— Gnlz,1). (A.2)

So workers are spread across the linear city according to their productivity quantiles,
with the most productive closest to the CBD.

To solve for the equilibrium bid-rent curve, I integrate the Alonso-Muth con-
dition (A.1) over the line using the assignment function (A.2) to substitute for z. I
normalize rent at the city edge to zero, so

oot [ e (102 Y ey A
rn( 7t)— nvn n/; n ( _Ln(t)7t) . ( 3)

In general, the equilibrium bid-rent curve inherits the lack of a closed-form solution
from the human capital distribution. Nevertheless, one can identify an important
trait of the total urban cost (9,T},)2¢% + r,(£,t), namely that it can be detrended
by the same rate v as the rest of the model. This is because workers are assigned to

"That is, gn(z,t) = (L/Ln(t)) fOA gn(a, z,t) da and Gn(z,t) = [7 gn(¢,t) dC.
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distances in accordance with their productivity quantiles, all of which grow at the
same constant rate v by definition of the BGP. One could substitute this specification
of the urban cost into the main text and go on to solve for the BGP without hitting
any theoretical obstructions.

I do not proceed along this route for a computational reason: it is much faster
and easier to iterate over a small set of location characteristics than a large one. In
the main text, workers need only consider the vibrancy and population of each city,
which has dimension 2N. Under the specification above, however, they would need
to consider all vibrancies and rent gradients. The latter are continuous functions
over the space of detrended productivities; their set, when discretized with M,
points, consists of N M, values. Since sorting by skill within the city is not a focus
of this paper, I want to avoid this computational burden.

Accordingly, I further suppose that within each city there is a local government
who collects land rents and redistributes them to current residents. Note that the
local government can target residents by their productivity without distorting their
choice of distance from the CBD. The only constraint on the local government is
that it cannot run a deficit; for simplicity, surpluses are simply burned.” In order
to generate the urban cost specified in the main text, the government of city n must

impose the reimbursement schedule
La(t)\
Qn(zv t) = Tn(‘cn(za t)7 t) - ('ﬁnTn)z <2()> - £n(27 t)en] (A4)

This reimbursement schedule is feasible: the local government just hands back each
worker’s land rent minus a non-negative amount. All workers are weakly worse
off than they would be without the transfers, and more so for higher-skilled ones,
but this is of no consequence for the questions of this paper.””> When we consider
optimal policy, we restrict our perspective to that of a national planner who takes
local policies as given. Thus, local policies are one of the constraints defining the
constrained efficient allocation.

A.2 Derivation of the Hamilton-Jacobi-Bellman equation
A.2.1 Specification of a worker’s location history

The location history of an individual w at date ¢ is a set
HO(t) = {ng, I°(t), Hy (), H; ()}

with the following elements:

" Alternatively, one could suppose that they are surrendered to a national pool and redistributed
equally to all workers as a lump sum so that they do not distort any choices.

"> A helpful analogy is to consider how we often introduce subsidies into New Keynesian models
to correct for inefficient production when dealing with the inefficiency would only be a nuisance for
the question at hand.
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e her birth location ng;

e her count of migration opportunities I“(¢) € N, which evolves as a Poisson
process with arrival rate A;

e an [“(t) x N matrix Hy(t) recording her idiosyncratic preference draws, which
are drawn i.i.d. from the Fréchet distribution;

e an [“(t)x N binary Markov matrix H¥ (¢) recording her location choices, which
are optimal controls that take into account her idiosyncratic preference draws.

Let N be the column vector of location labels [1,2,..., N]. The set of locations
that individual w has chosen through date t is the set of elements in the vector
n*(t) = HY(¢)N, which we denote by n¥ for . = 1,2,...,I¥(t). For any date ¢’ < t,
her location at ' is encoded as
ne () = e“(t',t)n¥(t) if I¥(t) >0
ng else
where e“(t',t) is the elementary column vector of length I¥(¢) with a one in entry
I¥(t'). The function n¥(t) is continuous from the right. The law of motion for an
individual’s location is therefore
dn®(t) = [n“(t) — n“(t-)] dI¥(t).

where n“(t_) is the limit of n¥(t) from the left.
Her flow utility at date t is the product of her current local amenity, her con-

sumption, and her history of permanent preference shifters and migration costs.
Define

b¥(t)
(1)

H, (1) Hy (¢)

HY_(t)HY(t)T

where H¥_ (t) is the origin matrix, which is just the one-step lag of the choice matrix
H (1),

o [0 ... ... ... O]
" 1 0 ... ... 0
N
HY ()= | . + (010 O HR ),
Onlew o ... 0 1 0

and T = [Tm| N« is the matrix of bilateral migration costs. Both b (t) and 7“(¢)
are column vectors of length I“(¢) with typical elements by’ = by and 7,7 = T | ne,
respectively. With this notation, flow utility can be written as

I°(t) jw

Unle; HY] = H o

=1 ¢

B,c
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where c¢ is an amount of the consumption good.

A.2.2 Recasting the sequence problem in recursive form

Under the assumption that location-specific preference shocks are permanent in the
particular sense defined in the previous section, the value function of an individual
w of age a with human capital z and history H in location n at date t is

t+A—a () ” agg =a

~ 2 —pr “ 2(t) =z
Vila, z,t;H) max E /e 1_[1 7o Bpcn(s,r)dr n(t) = n (A.5)

¢ - H(t)=H

subject to the budget constraint
en(5,7) = TpLn(r)*(1—5) — ppLn(r)?n
and the laws of motion
da = dr
dz = [/ﬂ(s(r))zﬁZﬁb_ﬁ} dr

and those for n(r) and H(r) specified in the previous section. The general form of
the corresponding Hamilton-Jacobi-Bellman equation (HJB) is

I=(t)

. b 1
an(a, z,t; /H) = max H 7?_:) Bncn(s’ t) + %E an(t) [a(t)’ Z(t)v L /H(t)]
=1 't

subject to the same constraints. Following Sennewald and Wilde (2006, Section
2.4), we can rewrite the HJB in three steps.

1. Use a change of variables to write

dVp(a,z,t: 1) = {8 Vi (a, 2, t; 1) + 0V (a, 2, t; H)[a] + 0. Vi (a, 2, t; H)[Z]} dt

+ Vo (a, 2,6 Hy) = Vala, 2,6 H) dI (),

where H 4 is the limit of the worker’s history from the right, incorporating the
optimal location choice at the next migration opportunity, n.

2. Using EdI(t) = Adt and that a =1,

EdV,(a, z,t) = {0:Vn(a, z,t; 1) + 0aVi(a, 2, t;H) + 0. Viu(a, z, t; H)[2]} dt

+ AV (a, 2, t;Hy) — Vi(a, 2, t;H)] dt.

3. Divide by dt.
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The resulting HJB is

() »

~ bUJ
n I 7t; AL Bn n 7t
pVila, z,t;H) —max{ Ll_ll 7o cn(s,t)

S

+ 8.V, (a, z,t;H) [ﬁ(s)zﬂZ}fﬂ} } (A.6)

+ 8t17n(a, z,tH) + aaf/n(a, z,t;H)
+ A [Vm (a,z,t;Hy) — Vi(a, z,t;?—l)} )

and we have the following lemma by construction.

Lemma 2. The value function Vy(a,z t;H) specified in (A.5) is homogeneous of
degree one in the agent’s location history up to time t from the left.

Lemma 2 states that the scale of the value function can be renormalized after
each migration opportunity without affecting future decisions, even though those
decisions are forward-looking. The key is that once a particular preference shock
is realized and its associated city is chosen, l;‘;’, it multiplies all future utility flows,
regardless of subsequent investments or migration decisions. The same goes for
migration frictions, 7,”. Since the scale of utility is irrelevant for decisions, we can
arbitrarily renormalize the scale of a worker’s history up to the present moment,
which we will do from now on when we write the worker’s problem.

The final maneuver is to take expectations with respect to the Fréchet taste
shock from the contemporaneous migration opportunity. Letting V,,(a, z,t) denote
the value function that incorporates said expectation, we have,

pV(a, z,t) —max{B cn(s,t) + 0, Vy(a, 2,t) [,Q(S)Zﬁzrl;ﬂ]}
+ 0V (a, z,t) + 0, Va(a, 2, t)

b¥
+A {Ebw [maXZVi(a, z,t)] — Vaula, z,t)} .

1 Tni

(a,
(a,

With the usual algebra, we find that

1/e
Epe [maxbwvaZt} (Z Vi(a, z,t) ) ;

and that the optimal migration shares are

Viela,z,t) z} 1 Vila, 2, 1)

Mpi(a, z,t) EP{argmaxbw = — )
" e Sk Tt Vi, 2, 0)°

Tnk
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It follows that

} = mpi(a, z,t)” M, any 1. (A.7)

Tni

E,. [max peVilet)

A Tni

We emphasize that the right-hand side holds for any city 7. This makes sense because
the HJB is agnostic about which specific location attains the maximum.

Equation (A.7) yields two particularly useful specifications. The first is analo-
gous to what is done in Caliendo, Dvorkin, and Parro (2019) and similar models:

Vi(a, z,t)

Tni

Epw [ma by ] :mnn(a,z,t)_%Vn(a,z,t).

With this specification, only the current location appears in the HJB; in fact, the en-
tire migration block can be brought over to the left-hand side, appearing analogously
to an adjustment of the discount rate. While simple, this specification appears to
divorce the HJB, for which the identity of the location choice is inconsequential,
from the Kolmogorov forward equation, for which it is crucial to track cross-city
flows. Accordingly, I prefer a second specification:

Epw [maxb‘{’v(aZt} me a,z,t)” V(a i t)

i Tni
The HJB can then be written as

pVala, 2,t) = max { Buca(s,) + 0.Va(a, 1) [w(5)2° 27| }
+ O Vi(a, z,t) + 0,Vy(a, 2, t)

_1+e

‘ ‘/;(Q,Z,t) - Vn(avzat)]

NTm'

where we are free to bring V,(a, z,t) inside the brackets of the last line because
> mni(a,z,t) =1 for all (n,a, z,t).
A.2.3 Optimal investment rule

Consider the maximization over a worker’s raw labor allocated to investment, s, in
the HJB equation (5). With k(s) = %3", the first-order condition with respect to s
is

0=—B,T,L,(t)z + 0.V, (a, z, t)ﬁs"_lzﬁZn(t)l_’B.

Solving for s yields the rule
1
(ROVila,2,t) ((Za(®)\TPN T
sp(a,z,t) = ( BT (1) ( . . (A.8)
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A.3 Heuristic derivation of the Kolmogorov forward equation

Following Achdou et al. (2022, Appendix B.3), it is easiest to start by working in
discrete time with the cumulative density function G. In particular, let

Gnla,z,t) =Pla; < a,z < z,ng = n},

which is the fraction of workers with age less than a and human capital less than
z in city n at date t. In order to derive a law of motion for G, consider first the
human capital accumulation process. If a worker in city n of age a has human
capital z;4 A at time t+ A, then what level of human capital z; did she have at time
t? Temporarily ignoring migration and aging, one valid expression is

2t = ze A — Ahp(a, ze4n,t).

That is, if an individual accumulates so that A > 0, her past human capital must have
been lower than her current human capital. Still temporarily ignoring migration and
aging, given that accumulation is always non-negative, we have

P{zisn <z} =P{z < z — Ahy(a, z,1)}.

Now reintroduce aging, which obeys the simple process a; = a;+a — A, and migra-
tion, where the probability of switching from city n to city ¢ in a period of length
A is Admy;(a, z,t), to get

Platra <a,zien < 2,m10 =10}
=1 -ANP{a; <a— A,z < z— Ahy(a,z,t),n, =n}
+ A)\me(a, z,t)P{a; < a— A,z < z— Ahi(a, z,t),n = i}.

Using the definition of G, we have

Gr(a,z,t+A)=(1—-ANGp(a— A,z — Ahy(a, z,t),t)
+ AN Z Mmin(a, z,t)Gi(a — A,z — Ahi(a, z,t), t).

1

Now subtracting G, (a, z,t) from both sides and dividing by A, we have

Gn(a,z,t+ A) — Gpla,z,t)  Gnpla— A,z — Ahy(a,z,t),t) — Gul(a, z,t)

A A
— AGp(a— A,z — Ahy(a, z,t),t)

+AY min(a, 2, )Gila — A,z — Ahi(a, 2,1), 1),
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and adding +Gp(a — A, z,t) /A to the right-hand side, we have

Gnla,z, t+ A) — Gpla,z,t)  Gnpla— A,z — Ahyp(a, z,t),t) — Gula — A, 2,t)

A A
Gnla— A, z,t) — Gpla, z,t)
+
A
—AGp(a— A,z — Ahy(a, 2,t),t)

+ )\me(a, z,t)Gi(a — A,z — Ahi(a, z,1),1).

7

Taking the limit as A — 0 and separating my,,(a, z,t) from the sum in the final
term yields

0Gp(a, z,t) = —hy(a, z,t)0,Gp(a, z,t) — 0,Gn(a, z,t)

— A1l —mpn(a, z,t)|Gnla, z,t) + A Z min(a, z,t)Gi(a, z, ).
i#n

This equation is nearly identical to the Kolmogorov forward equation (9) except
that it is stated in terms of the cumulative density. Taking the partial derivative of
both sides with respect to a and z recovers equation (9) only if the extraneous terms
from the product rule drop out. It is at this juncture that the heuristic proposed
here reaches its limit, since one cannot verify directly that the terms do indeed drop
out. Interested readers can turn to Achdou et al. (2020, Ch. 1, §3.1), which outlines
a more direct derivation that requires working with stochastic calculus in the space
of possible sample paths for agents.

A.4 Derivation of the balanced growth path
A.4.1 Detrending the equilibrium conditions

The goal in this section is to derive the detrended equations at the end of Sec-
tion 2.2.4. To that end, recall the Hamilton-Jacobi-Bellman equation (5) and
the Kolmogorov forward equation (9). Recall also Definition 2, which states that
a balanced growth path is a number 7 and a tuple of functions (v,o,u, ) on
N x [0, A] x Ry such that

Vi(a,z,t) = " v,(a,z)
sn(a, z,t) = on(a, )
my(a, z,t) = pn(a, x)
gnla, z,t) = e "o, (a, x)

for all (n,a, z,t) and (V, s, m, g) is an equilibrium with the initial condition g, (a, z,0) =
én(a, z), where z = ze™ 7" denotes productivity relative to trend.
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Start with the Hamilton-Jacobi-Bellman equation. We want to show that (i)
the expression €7! can be factored out of each of its terms and that (ii) the expression
that remains after dividing through by e is independent of time. We will go term-
by-term through the derivation:

Vi(a, z,t) = vy (a, x)
O Vi(a, z,t) = veT vy (a, ze7 ) — y[ze e Davy(a, ze” )
= "y (a, z) — yx Opvn(a, x)]
0, V(a, z,t) = " [0,v,(a, ze™ )]
= e " yuy(a, ze™ M)

= xvn(aa 37)

1/¢
= <L // (me”t)ce*wgbn(a,x) dajidx)
1/¢
=¢t <L // 2% ¢ (a, ) da da;)

=X,

1

Sn(a’m:(nanTath( ) > =
- (e ()" )

= op(a,x)

By (TaLn(0)*[1=5n(a, 2, 1)] — pula(t)) 2
w()2° Zn(t)' ] = [k(0) (e (7 X,) 7]
=t [R(U)xﬁX};ﬁ}

0aVin(a, z,t) = €' 0qun(a, x)

B, (Tan[lfUn(a, x)] — anz”) x

T [ (a, z)]°
>k T (€7 0g(a, )]
_ 7, vi(a, z)*

>k T Vk(a, )¢

= pini(a, )

Mmpi(a, z,t) =
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1+e _1+e

Vi(a, z,t) — Vi (a, z,t)] =t [in(a,x) - vn(a,x)] .

Mpi(a, z,t)~

N

N

All together, we see that €7 can be factored out of the Hamilton-Jacobi-Bellman
equation, leaving us with

(0= )vn(a,2) = By (TaLa[l = on(a,@)] = pufy' ) @
+ Ozvn(a, x) (m[an(a, D, G ’yx)
+ A Zl Mni(av ‘T) [fni(av x)vi(a7 37) - vn(a, :L’)]
+ aavn(aax)7

with terminal condition v, (A4, z) = 0 for all (n,z).

Now turn to the Kolmogorov forward equation. We want to show that (i) the
expression e~ can be factored out of each of its terms and that (ii) the expression
that remains after dividing through by e~ is independent of time. We will again
proceed term-by-term:

Ogn(a, z,t) = —76_7t¢n(a x) — vxe_vtamén(a,x)

0 0 [(0z0
Sl (en (e 0] = 5 (5250 ) (R0 X e a0

— (ax[n(a);pﬂxg—%n(a, 1:)])
gila,z,t) = e " ¢i(a, )
8@9”(0'7 Z, t) = eiﬁ/taa(bn(a’ x)
g(z,t) = e_vtg(x).

All together, we see that e™7! can be factored out of the Kolmogorov forward equa-
tion, leaving us with

—Y[bn(a, ) + 2 Oppn(a, x)] = =0z [hn(a, z)pn(a, )]
— A1 = pnn(a, z)|dn(a, x)
+>‘Z .Um a,T ¢z(a IE)

- a(bn(a? ‘T)

(A.9)

or, after rearranging,
0 = =0x[(hn(a, z) = y&)dn(a, x)] = A[1 = pinn(a, z)]én(a, z)
+ )\Z tin(a, z)di(a, ) — Oudn(a, )
with the slight abuse of notation
ho(a,z) = Klon(a, z)]zP X175,
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A.4.2 Properties of the value function

Lemma 1. The value function v,(a,x) is decreasing in age, a, and increasing in
relative human capital, ©. Moreover, the second partial Oy zvn(a, ) is always non-
positive, as is the cross partial Og zvn(a, ).

Proof. The value function vy, (a, ) does not have a closed form, but one can nonethe-
less deduce the four claims. This argument takes as given that, for any given n,
there are no kinks in the value function and all derivatives up to second order exist.

(i)

(i)

(iii)

Consider two workers, one with state (n, a, z) and another with state (n,d’, z),
where a’ < a. Let the first worker use her optimal investment and migration
policies so that she achieves the value v,(a,x). Let the second worker copy
the investment and migration decision of the first worker. The second worker
attains a value 0,(a’,xz) > wv,(a,z) because he has extra life over which to
reap returns from his accumulated skill. If he used his own optimal policies,
he would attain the value v, (a’, z) > 0, (d’, x).

Consider two workers, one with state (n, a, z) and another with state (n, a,z’),
where < 2/ and a < A. Let the first worker use her optimal investment
and migration policies so that she achieves the value v, (a,z). Let the sec-
ond worker copy the investment and migration decision of the first worker.
The second worker attains a value 0, (a,x’) > v,(a,x) because, for any level
of investment, he will earn more income and reap higher returns to his in-
vestment. If he used his own optimal policies, he would attain the value
vn(a, ") > vp(a,2’). When a = A, v,(A,z) =0 for all z, so d,v,(A4,z) = 0.

The concavity of the value function in human capital follows from backwards
induction by repeatedly applying the argument used in Stokey and Lucas
(1989, Theorem 4.8) to the discrete-time analogue of the value function and
taking limits as At — 0. Because the human capital production function is
strictly concave in current human capital, the worker’s constraint set is convex.
Because, in addition, her earnings are linear in her human capital, it is easy to
verify that her flow utility is jointly concave in (i) her current human capital
and (ii) her human capital after investing for a period of length A¢. Finally,
the terminal value function v, (A, z) = 0 is trivially (weakly) concave in human
capital.

This follows from (i) and (ii) by backward induction from the marginal value
of human capital at the maximum age: d,v,(A,x) =0 for all (n, z).

O]

A.4.3 Derivation of the growth rate

The growth rate 7 is determined by integrating (in the sense of Lebesgue) the
Kolmogorov forward equation over the state space and leveraging two facts: (i)
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there is no net migration on a BGP (Equation (11)), and (ii) the marginal density
with respect to age is uniform. I now provide a formal proof.

Theorem 1. A balanced growth path characterized by the functions {v,o, u, ¢} has
the growth rate

> S wlon(a, 2)]a? X378 dp(a, ) da
, v . 17
Y= Zn fo +on(a.2) da x € supp(o) (17)

Proof. Let X = [zgupp,00) C Ry, where xgypp is any arbitrary relative productiv-
ity in the support of ¢. Although the support of ¢ is endogenous, Assumption 1
guarantees that zg,pp > 0 for any permissible choice. Moreover, because the vi-
brancy is well-defined, it must be that limy_,o ¢y (a,z) = 0 for any (n,a), hence
limg_y00 An(a, ) ¢n(a,z) = 0 for any (n,a) as well. Both limit statements are trivial
whenever the support of ¢ has a finite upper bound.

Now consider the detrended Kolmogorov forward equation as specified in (A.9).
Integrate both sides over the space N x [0, 4] x X and make use of the following
identities:

zn: // bnla, z) dr da =1 = P(Tsupp)
;//A#Zn#in(a,$)¢i(a,x) dx da = zn:/ AL = pion(a, 2)|én(a, ) dz da
Z// Oathn(a, ) da dx = 0,

where the first follows because ¢ is a probability density; the second, because there
is no net migration on a BGP; the third, because the marginal distribution of age is
uniform. Now isolating v yields

> JJ Oulhn(a, x) ¢u(a, z)] du da
1 — ®(2supp) +Zn [f x0pdn(a,z)dxda

Integrating the numerator with respect to x yields

Z//a (0, 2)¢n(a, @ da:da—Z/ (a,2)¢n(a,2)| | da
__ Enj / (@, Zsupp) (@, Tsupp) da

by the Fundamental Theorem of Calculus. Integrating the second term of the de-

’Y:
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nominator by parts with respect to x yields

a:E n ] d d = " , ‘ — n , d d
zﬂ://x on(a,z)drda ;/[:@(a:r)x /d)(a:r) x} a

= — Z / xsupp¢n<a, msupp) da — [1 — @(msupp)]_
Substituting these expressions back into the expression for v yields

A
. Zn fo b (@, Zsupp) ¢n(aaxsupp) da
— o )
> on fo Tsupp Pn (@, Tsupp) da

Since Zsupp € supp(¢) was arbitrary, this proves the claim.
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B Data

B.1 Decennial Census and American Community Survey . . . . ... .. 71
B.2 BEA Regional Accounts . . . . . .. .. ... 0. 72

B.1 Decennial Census and American Community Survey

Unless otherwise specified, data at the level of Metropolitan Statistical Areas (MSAs)
use the February 2013 OMB definitions of MSAs.

2010 Decennial Census

From the 2010 Decennial Census, I collect the population count of each MSA. I use
2010 population counts only to group cities together, as described in the main text.

2010 ACS 1-year sample

From the 2010 ACS 1-year sample, I compute the share of all 15-19 year olds living
in each MSA, with MSAs defined according to the December 2009 OMB definitions.
These data are downloaded from IPUMS (Ruggles et al., 2022).

2011-15 ACS 5-year sample

From the 2011-15 ACS 5-year sample, I compute empirical CDFs of age and wages
within each MSA among workers who are employed full-time, which I define by (i)
being employed, (ii) working at least 35 hours per week, and (iii) working at least 40
weeks per year. I also compute the college share among those employed full-time in
each MSA, where I define college as completing at least four years of post-secondary
education. These data are downloaded from IPUMS (Ruggles et al., 2022).

2011-15 ACS 5-year Migration Flow files

The ACS 5-year Migration Flow files comprise period estimates that measure where
people lived when surveyed (current residence) and where they lived 1 year prior
(residence 1 year ago). The data are collected continuously over a 5-year period in
order to provide a large enough sample for estimates in smaller geographies. The
flow estimates resemble the annual number of movers between MSAs for the 5-year
period data was collected.

The 2011-15 release is cross-tabulated by demographic characteristics: age,
sex, race, and Hispanic origin. I only use the information on age. Age is broken
down into the following fifteen categories: 1 to 4 years, 5 to 17 years, 18 to 19 years,
20 to 24 years, 25 to 29 years, 30 to 34 years, 35 to 39 years, 40 to 44 years, 45 to 49
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years, 50 to b4 years, 55 to 59 years, 60 to 64 years, 65 to 69 years, 70 to 74 years,
and 75 years and over. To be consistent with the rest of my quantitative procedure,
I restrict my attention to flows of people between age 20 and age 59.

B.2 BEA Regional Accounts

From the BEA Regional Accounts, I collect the 2013 local area personal income files
at the county level and aggregate them to the MSA level. My primary measure of
city size is counts of wage and salary jobs. My primary measure of city output is
wages and salaries in thousands of current U.S. dollars. My results are robust to
using broader measures, like total population for city size and gross metro product
for city output. Data on gross metro product are collected directly at the MSA
level.
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C Computation

Cl Setup . . . . o e 73

C.2 Overview of algorithm . . . . .. ... .. ... ... ......... 74

C.3 Solving the Hamilton-Jacobi-Bellman equation . . . .. ... . ... 75

C.4 Solving the Kolmogorov forward equation . . . ... ... ... ... 7
C.1 Set up

A balanced growth path of the economy can be represented by the following system
of equations that I aim to solve numerically:

(p —y)vn(a,z) = BT, Ly (1—0) — anfL”]aU + [Opvn(a, z)]dy(a, x) + Oqvn(a, x)

+ A Zz Nni(a7 1‘) [gni(av x)vi(a7 .’L‘) - Un(av :C)]
(C.1)

0= _aoc[dn(a7 $)¢n(a7 .73)] - aa¢n(a7 .CU)

C.2
— Apn(a, ) + )\Zi tni(a, z)pi(a, x) (©2)

X, = <L//m< bnla, ) d:cda)é, VneN (C.3)

L, = L// on(a,z)dxda, YneN (C4)

o T nla,2) 60 0, 2) da
Zn fOA[x ¢n(a, $)] da

with terminal condition v,(A,z) = 0 and initial condition ¢, (0,z) = %Qn(ac) for
any (n,x), where

,  Va € supp(¢) (C.5)

dn(a’ l‘) = hn(a> l‘) -

hn(a, ) = Klon(a, z)]2P X1

are optimal drift and skill accumulation, respectively, with optimal time spent learn-
ing o, (a, ) the solution to

oy BaTWLg oz 7P
K (O') - 3xvn(a, l‘) (Xn> ) (CG)
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and where

T, fvi(a, )
i\, L) =
/’I’TL’L( Y ) Zk Tn—kevk(a’ .T)G

1+€

1 _
fni(aw’U) = mﬂm(a@) €

are the optimal migration shares and selection bonuses, respectively. Relative to
the systems of equations presented in Achdou et al. (2022, Num. Appx.), the new
components here are the endogeneity of the discrete state transition, finite lives,
and growth. Ben Moll describes how to incorporate deterministic finite lives in this
note.

C.2 Overview of algorithm

Below is a copy of the overview shown in Section 3.1.

Data: parameters {4, p, \, ¢, «, (, 8,1, R, Tscale }»
location fundamentals {B,,, T,,, P, On, Tni }, and
relative productivity distribution of entrants ¢
Result: BGP {v,0,u, ¢;v} B
Initialize with guess {7", L% X°}. Denote iterations by £ =0,1,2,.. ;
while not converged do
Given {7¢,L¢, X"}, solve the Hamilton-Jacobi-Bellman equation (12) usinga 1
finite difference method and calculate the policy functions o (a,z) and
i (@, 7);
Given o (a,z) and p,(a, ), solve the Kolmogorov forward equation (13) for 2
#¢ (a, ) using a finite difference method;
Given ¢! (a,z), compute the corresponding local populations and vibrancies 3

L :L/ ¢t (a,z) dz da, Xt = (L//o:gqﬁfl(a,:r) da:da)C

for each n, and compute the implied growth rate

w0 _ Tu Jy' slobla, 2la? (X4)177 91 (0, ) da
>on fOA z ¢t (a, ) da

, € supp(¢')

as defined in (17);
if {30, L¢, X’} close enough to {v*,Lf, X’} then
| converged;
else
construct {71, L1 X1 as a linear combination of the previous guess
and the computed values;

end
end
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Note that in place of iterating on the vector {7¢, L¢, X*} toward a fixed point,
one could instead solve for the fixed point using any of a number of nonlinear solvers.
See Judd (1998, Ch.5) for a review of the underlying algorithms.

C.3 Solving the Hamilton-Jacobi-Bellman equation

To solve the Hamilton-Jacobi-Bellman equation, I use a finite difference method: the
semi-implicit upwind scheme. 1 discretize the state space, denoting the grid points
by z;,i=1,...,] and aj, j = 1,...,J with Az = 2,41 — z; and Aa = a1 — a;
for all i, j. I approximate the functions (v, ¢) at each of these N x I x J grid points
and denote . .

v}, = vn(2i,a) and @], = du(xi,ay).

I approximate the derivatives with respect to a and x with either a forward- or
backward-difference approximation:

J J
aij L Vitin — Vin
T un Az ’
J J
anj L Vin — Vi-in
T nn Az '
Jj+1 J
aij _Yin —Uin
@ un Aa
J Jj—1
anj _ Vin " Uin
a “,n A(L :

An wupwind scheme means that one approximates the derivative O,vy,(z;,a;) by

7 whenever

Of'v!  whenever the drift of the state variable z is positive and by 0Zv] -
it is hegative. Because age only drifts forward, I always approximate bavn(ai, xj)
by oF vg - The qualifier semi-implicit just describes the method of iterating on the
value function.

Let v/ be the N x I column vector whose components are the values for both

discretized age-a; value functions. That is,

J— gy J J J J J J o
vl = [U1,1,1)271,...,UI71,’L)1’2,...,’UI’Q,...,ULN,...,U],N] .

Define the N x I vector u/ similarly. Then, for a given set {,L,X}, the value
function can be found by solving

Vit _ i

O S NI LA
(p=)V =™ + Vit T,

(C.7)

by iterating backwards from the terminal condition v’/ = 0, where IV =1V o =
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is the Hadamard product between the transition matriz II7, defined by

)\'u‘]l,kn 0 0 1
J
0 Aupy, O
— 0
M, =
J J J J
™ M1,2 M1,3 M1,N .
J J J J .
M;, 7 My, M; n ) 9
) . L 0 0 )\ul,kn—
IV = M3, ) - -
. ”i,1 ”1,’1J 0 0
J
o o M W w0
_MN,I MN,Z MN,N—I N ’ ’ ’
J — 0
ﬂ'n =
0
B,j J F.j
0 7y 1 ™10 71l
B,j J
L O 0 i1 11
with the entries of 7 given by
th -
71_B,j _ (dz,n )
,n Aw
Fiy+
Fj (dz,n)
mn Ax
J kg Bj _ _
Wi,n - ﬂi,n + Tri,n )\(1 :ui,nn)7
and the selection matrix &7, given by
— J -
él,kn 0
J
0 gQ,kn 0
J
kn — 0 ’ k 7& n
&1 &, &3 - 1N
J J J J .
2,1 52 52,3 2,N . jO
L 0 0 I,kn <
=] §2 .
=) = 3, : , . ) )
7r‘{,n-’>>\(“’:i,'n/n_1)Hjl,nn 0 0
j Wj
N—-1,N 1,n
J J J J
| &nv1 En2 Evn-1 & 0
& =
n
W%,n*—/\(ég’,nn_l)”]l,nn
0 )
L I,n
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The transition matrices I/, j = 1,2, ..., J encode the evolution of the stochas-
tic process (at, x¢,n¢). Note, in particular, that TT/ satisfies all the usual properties
of a Poisson transition matrix: all rows sum to zero, all diagonal elements are non-
positive, and all off-diagonal elements are non-negative.

Returning to (C.7), note that it can be recast so that v/ appears as the solution
to a matrix equation:

B/tlvi = b/l where B/t = (1
Aa

+p—7> I-IH,
(C.8)
pitl = @it it
a
This matrix equation can be solved efficiently with sparse matrix routines.
Let us summarize the sub-algorithm to solve the Hamilton-Jacobi-Bellman
equation. For a given set {v,L,X}, iterate backwards from the terminal condi-

tions v/ = 0 and 65'v/, = 0 as follows:

1. compute o7+ from

Jj+1

0;, = min 1, max

. o
R@mvﬁl X\ 0
B.T,Lo ) \ z ’

—eq, g+l
Tkne(vzq,n )6

and g/t from

J+1 _ .
g = — - )
ukn Zn/ Tkne/ (/U,L"j’j;/l)e

2. compute w ! and IIFH;
3. find v/ from Bitlvi = p/+1;

4. stop once you compute v'.

C.4 Solving the Kolmogorov forward equation

I now turn to the solution of (C.2) subject to (C.4). I discretize these as follows:

. o o It _ gl
0= _[dg,n g,n]/ - A(l - iu“z,n) g,n +A Z lug,n g,n’ - Aa — (Cg)
n'#n

TR D) B (C.10)

I will approximate the derivative —[d; ¢ n]" by

Fj ) £ ) B \_ .j Bojs_
. (dznf)_‘_(ﬁz,n - (di—]l,n)+¢g—1,n . (dz—i-{,n) g—i—l,n o (di,nj) g,n
Az Ax
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where (df )1 is the forward approximation for skill accumulation that comes from
the final step of the HJB iterative procedure. It follows that I can approximate the
Kolmogorov forward equation by

. . ¢]+1 ¢
O_ﬂ-z—i—ln i+l,n+7rzq,n +7Tz 1,n"i— 1n+)‘z:uln¢ 7&
which can be written in matrix notation as
T i ¢j+1 _ ¢]
= ([P - C.11
()" ¢ - P ()

where ,

d)] = [QS{J, e 7¢][71) d){’Qa e 7¢%72) cry Qsjl’]\[y cety ¢J[’N
Note that (C.11) can be solved either explicitly,
¢ = Aa(P) ¢ + ¢,
or implicitly,
. O
¢ = (1-aa(¥)") o,
from the initial condition ¢! = @. Note that I can use IIV to solve for ¢/t! because
I’ve already solved for it when I did the value function iteration.
Note, too, that these schemes preserve mass: starting from any initial distri-
bution ¢! that sums to one, all future ¢?’s also sum to one. This follows from the

fact that the rows of the transition matrices IV sum to zero. The implicit scheme
is also guaranteed to preserve the positivity of ¢? for arbitrary time steps Aa.
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