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Abstract

Cities have long been thought to drive economic growth. Despite this, analyses of
spatial policies have largely ignored the effects of such policies on growth. In this pa-
per, I develop a spatial endogenous growth model in which heterogeneous agents make
forward-looking migration decisions and human capital investments over the life cycle.
Local externalities in the human capital investment technology drive both agglomera-
tion and growth. I show that, along a balanced growth path, the growth rate depends
on the spatial distribution of human capital, making it sensitive to spatial policies. I
calibrate the model to data on U.S. metropolitan areas and show that it can ratio-
nalize the faster wage growth of workers in big cities, as well as other key patterns in
life-cycle wage profiles, migration decisions, and city characteristics. Because workers
accumulate human capital at different rates depending on where they live, the model
provides an environment in which spatial policy can not just attract skilled workers,
but produce them, too. I find that policies that further concentrate skilled workers in
large cities are growth-enhancing.
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1 Introduction

That cities drive economic growth is a refrain often repeated since Jacobs (1969) and even
Marshall (1890). Ideas flow freely through city streets, the story goes, and pass all the more
rapidly between people the denser is the city. It is these ideas—embodied as human capital
in the workers who learn, use, and share them—that drive economic growth (Lucas, 1988;
Glaeser, 2011).

Recent panel estimates suggest that workers do indeed learn more in big cities and that
they anticipate the ensuing wage gains when making migration decisions over the life cycle.1

But models of idea-driven growth have yet to incorporate this evidence, instead restricting
attention to settings with no explicit space whatsoever.2 Accordingly, it remains unclear
how the allocation of workers across space contributes to determining the pace of aggregate
growth. At the same time, work evaluating spatial policies has been hamstrung by this gap,
unable to weigh the potential growth effects of policies that shift workers around the urban
landscape.

In this paper, I address these concerns by developing a quantitative spatial endogenous
growth model that can be used to evaluate spatial policies. In so doing, I make three
contributions. First, my model demonstrates a mechanism through which the allocation of
human capital across space determines the pace of aggregate growth. Second, in quantifying
the model, I jointly rationalize a host of empirical facts about U.S. cities in the cross-section
and U.S. workers over the life cycle. Third, with the quantified model in hand, I solve for
the outcome of a commonly-proposed place-based policy.

In the model, a finite number of cities are populated by heterogeneous workers who
make forward-looking migration decisions and human capital investments over the life cycle.
At the root of the model is a local externality in the investment process. Being near the
human capital of her neighbors quickens a worker’s accumulation of her own. As such, she is
attracted to large, skilled cities for the permanent productivity boost they afford her.3 It is
this desire, shared to varying degrees by all workers, that draws individuals into larger cities
despite their higher land rents; it is this permanent boost, experienced to varying degrees
by all workers, that fosters aggregate growth.

The state of the economy at any moment is summarized by the distribution of human
capital across locations and cohorts. An individual worker’s migration and investment deci-
sions depend on this distribution because the mass and composition of other workers in each
city determine her own returns to living there. Workers’ migration and investment decisions
in turn determine how this distribution evolves. Accordingly, one of the equilibrium condi-
tions is that workers solve a Hamilton-Jacobi-Bellman equation, taking the human capital
distribution as given. Another is that the distribution evolves according to a Kolmogorov

1On learning in big cities, De la Roca and Puga (2017) show that wage growth is higher in bigger
cities, these wage gains persist even after migration, and the wage gains are higher for workers with higher
initial ability. Their results are discussed in more detail in Section 3. See also Glaeser and Maré (2001);
Baum-Snow and Pavan (2012); Wang (2016); Carlsen, Rattsø, and Stokke (2016). On forward-looking
migration decisions, first see Sjaastad (1962), then Gould (2007), Kennan and Walker (2011), and Bilal and
Rossi-Hansberg (2021).

2See, for example, Lucas (2009), Lucas and Moll (2014), Gabriel and Lucas (2019), and Caicedo, Lucas,
and Rossi-Hansberg (2019), all of which consider workers to be the relevant economic agents. A related
literature following Luttmer (2012) and Perla and Tonetti (2014) that considers firms to be the relevant
agents has incorporated space—but not location choice—through international trade (Alvarez, Buera, and
Lucas, 2014; Buera and Oberfield, 2020; Perla, Tonetti, and Waugh, 2021).

3As Glaeser (1999) puts it, cities are “forges of human capital” and “intellectual furnaces where new
ideas are formed.”
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forward equation given the decision rules of individual workers.
I focus on a particular class of solutions to these equations, namely balanced growth

paths (bgps), along which aggregate production grows at a constant rate and the spatial
distribution of relative human capital levels remains stationary. As a consequence of this
stationarity, city sizes are constant along a bgp—Detroit does not deteriorate, New York
does not bounce back, the Sunbelt does not boom. Instead, differences across cities persist,
with bigger cities typically being more expensive, more productive, and more skilled. Nev-
ertheless, all cities experience shared output growth as workers migrate through the urban
system while accumulating human capital over the life cycle.4 So although the restriction
to bgps precludes studying the growth of individual cities, it proves to be a tractable way
to study growth because of cities.

My main theoretical result is an expression for the aggregate growth rate along a bgp.
The growth rate is pinned down endogenously as a function of the entire human capital
distribution across space. In particular, I show that it can be expressed as the weighted
average of the returns to investment in human capital, with more weight given to investments
made in larger, more-skilled locations. The key here is that, in this economy, all productive
capacity—both raw labor and knowledge—is embodied in workers.5 Workers invest in their
own knowledge by combining their labor and what they know with the knowledge of those
around them. Whether the knowledge they create is wholly new to the economy or simply
new to them is immaterial. What matters is that, contrary to many discussions of human
capital, their knowledge is only partially rival.6 It is rival to the extent that a worker cannot
clone her raw labor—what one could call the “one brain, one body” constraint—but it is
nonrival to the extent that it spills over into the learning processes of her neighbors. Notice
the restriction to her neighbors: when every idea must be in somebody’s brain, it matters
where those brains are.

I solve for a bgp numerically by adapting an algorithm from Achdou et al. (2022). In
so doing, I address what has been called the “hard problem” of regional economics, which
asks how to solve models in which growth and agglomeration are outcomes of a joint process
(Breinlich, Ottaviano, and Temple, 2014, p.685). This problem has been hard because it
is high-dimensional: to make choices today, (heterogeneous) agents must understand the
distribution of economic activity over space and time, and those choices in turn determine
how the distribution behaves (Desmet and Rossi-Hansberg, 2014, pp.2–3). The key to
my solution is that my equilibrium is a mean field game, a type of differential game first
formulated by Lasry and Lions (2007). Mean field games are now the subject of a growing
mathematical literature discussing their properties and numerical schemes to solve them, of
which the algorithm from Achdou et al. (2022) is one example.7

4Admittedly, the same mechanism that determines the pace of aggregate growth in this model—namely,
local knowledge externalities—may play a key role in what Moretti (2013a) calls the Great Divergence,
wherein average wages in cities with larger endowments of skilled labor have pulled away from those in cities
with smaller endowments since the early 1980s as technical change and globalization have pressed upon the
U.S. economy (see also Glaeser and Saiz, 2004; Berry and Glaeser, 2005; Giannone, 2022). Through the
lens of this model, though, these secular trends would drive transitions between bgps, not movements along
them. The study of the model’s transitional dynamics is left for future work.

5As in Caicedo, Lucas, and Rossi-Hansberg (2019): “all knowledge in the economy is held by the indi-
vidual people who comprise it: there is no abstract technology hovering above them in the ether.”

6See, for example, Romer (1990, §2), who compares the nonrivalry of a design with the rivalry of the
ability to add, and Jones (2005, §1).

7See Achdou et al. (2020) for an overview. To date, Achdou et al.’s (2022) algorithm has been used
mostly for consumption-savings problems with incomplete markets, where the continuous choice variable
is household wealth. Lucas and Moll (2014) used an early version of this algorithm to solve a model with
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I quantify the model using recent data on 378 U.S. metropolitan areas in three steps.
First, I back out measures of migration frictions from five years of observed flows between
cities that are cross-tabulated by age group in the American Community Survey. Second, I
calibrate the parameters governing the human capital investment sub-problem—which nests
the canonical Ben-Porath (1967) model—to values that have been shown to rationalize key
patterns in life-cycle wage profiles and the U.S. earnings distribution. Finally, I estimate the
remaining parameters using a minimum distance estimator to best fit Duranton and Puga’s
(2023) estimates of workers’ returns to experience in big cities, in addition to observed city
employment and total wage bills.

The quantified model can match its aggregate targets exactly and implies city fun-
damentals that correlate well with observed features of those places. Despite solving for
the spatial distribution of human capital nonparametrically, the quantified model generates
reasonable marginal distributions of skill and age within each city. This is so in part because
the model also does well in rationalizing observed patterns in human capital investments
and migration over the life cycle. In particular, consistent with recent evidence, earnings
growth is higher in big cities, and this boost in earnings persists even after migration to
a smaller city, because workers accumulate human capital more quickly in bigger places.8

This dynamic component to the earnings premium is anticipated by young workers, who
migrate disproportionately to bigger and more-skilled cities in order to increase the returns
to their time spent learning.

As an application of my quantitative framework, I consider a counterfactual in which
I relax land use restrictions in the “brain hubs” of New York and San Francisco to the
level of the median city, thereby making it cheaper for those two cities—already large and
productive—to expand. I find that, along the new balanced growth path, both cities are
larger and more skilled, with New York especially so. This is not primarily the result of
skill-biased migration, as if the brain hubs simply syphoned off skilled workers from other
cities. Instead, the rate of human capital accumulation in both cities increases, meaning that
the spatial policy helps produce more skilled workers. Ultimately, I find that the aggregate
growth rate for the entire economy increases by 13 basis points in response to the policy.

Related literature

The canonical paper from which this paper develops is Lucas (1988), though the model in
its mechanics is actually closer to that in Uzawa (1965). In both papers, growth is driven
by the costly accumulation of human capital by an infinitely-lived representative individual.
Lucas (1988, §6) observes that this mechanism may undergird the power of cities argued
for by Jacobs (1969), but he does not model it explicitly.9 In his later work, Lucas further
developed his observation by modeling the accumulation of human capital through meetings
between heterogeneous individuals but, crucially, he continued to abstract from the space

balanced growth but with only one location. A few contemporaneous papers have used the algorithm in
spatial models. The closest of these to the present paper is Martellini (2022), which investigates potential
causes of the urban wage premium in a stationary equilibrium. See also Bilal (2023) and Greaney (2023).

8See especially Glaeser and Maré (2001), Baum-Snow and Pavan (2012), and Duranton and Puga (2023)
who study U.S. workers.

9“It seems to me that the ‘force’ we need to postulate to account for the central role of cities in economic
life is of exactly the same character as the ‘external human capital’ I have postulated as a force to account
for certain features of aggregative development. . . . What can people be paying Manhattan or downtown
Chicago rents for, if not for being near other people [in order to learn from them]?” (pp.38–39).
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in which those meetings happen and by which they are circumscribed.10 By contrast, this
paper models cities explicitly while incorporating skill heterogeneity and adding life-cycle
dynamics that are critical for rationalizing evidence from worker panels.

Others have embedded Lucas’s (1988) endogenous growth model in an urban system,
most notably Black and Henderson (1999).11 Their model is highly stylized: there are two
types of perfectly-specialized cities, all populated by interchangeable members of a household
who are allocated to locations by a patriarch. Such bones are unfit to carry the flesh of
facts from worker-level studies of migration and human capital investment.12 Moreover, in
their model agglomeration and growth occur through separate processes: the agglomeration
spillovers are wholly static, and the learning technology has no local effects. This leaves aside
the “hard problem” and is inconsistent with recent evidence that my model can rationalize
(Glaeser and Maré, 2001; Baum-Snow and Pavan, 2012; Wang, 2016; De la Roca and Puga,
2017).

Still others have developed static models in which local knowledge spillovers among
heterogeneous workers beget agglomeration.13 Glaeser (1999) considers one city and its
hinterland, wherein city residents are more likely to become skilled.14 His model predicts
that younger, skilled individuals will sort disproportionately into the city because they value
the learning that the city provides. Davis and Dingel (2019) embed a similar mechanism into
a system-of-cities model, which they use to rationalize the higher nominal wages, housing
prices, productivity, and average skill level observed in larger U.S. cities. My model matches
the same facts, but it also rationalizes observed patterns of life-cycle migration and human
capital investments over time. Moreover, because my model is dynamic, it can trace out
the effects of local knowledge spillovers on long-run growth, not just cross-sectional city
characteristics.

Work on spatial policy has also suffered from the restriction to static models.15 To
conclude their review of place-based policies, Glaeser and Gottlieb (2008, p.215) advised that
“[l]ocal policies that either attract or produce skilled people seem likely to offer the best
chance of improving the fortunes of a troubled urban area.” With static models, attention
has been paid only to how (and who) those policies attract (Gaubert, 2018; Hsieh and
Moretti, 2019; Fajgelbaum and Gaubert, 2020; Rossi-Hansberg, Sarte, and Schwartzman,
2021; Donald, Fukui, and Miyauchi, 2023b; Gaubert et al., 2024).16 This paper studies how
such policies might affect the production of skilled workers, too.17 In principle, policies that

10See Lucas (2009), Gabriel and Lucas (2019) and Caicedo, Lucas, and Rossi-Hansberg (2019), which
include cohort structures, and Lucas and Moll (2014), which includes costly on-the-job learning.

11See also Eaton and Eckstein (1997), whose framework is closer in spirit to mine but whose specification
of endogenous growth is incomplete, and Rossi-Hansberg and Wright (2007), who further develop Black
and Henderson’s approach in a stochastic environment with many industries. Using an augmented version
of Black and Henderson’s model, Davis, Fisher, and Whited (2014) estimate that agglomeration, by itself,
raises per capita consumption growth by 10.2%.

12Compare Klette and Kortum (2004), who use “[f]irm-level studies of research and development, produc-
tivity, patenting, and firm growth” to “add flesh to [the] bones” of Schumpeterian growth theory.

13Behrens and Robert-Nicoud (2015) reviews agglomeration theory with heterogeneous agents.
14Glaeser’s agents live two periods, but the equilibrium conditions (1) and (2) are static.
15Contemporaneous work by Donald, Fukui, and Miyauchi (2023a) studies optimal spatial policy in a

dynamic model with frictional migration à la Caliendo, Dvorkin, and Parro (2019).
16For Hsieh and Moretti (2019), who interpolate between two static equilibria of their model to infer tfp

growth from the data, an additional concern is that they treat as exogenous a variable (namely, productivity
growth) that my model demonstrates is in fact sensitive to spatial policies.

17Rossi-Hansberg, Sarte, and Schwartzman (2021, p.43) make this explicit: “Our analysis abstracts from
the role that spatial polarization might have on human capital formation.” So do Fajgelbaum and Gaubert
(2020, pp.1014-15): “Finally, we only considered a static model, where each worker type is fixed regardless
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attract human capital to cities where it might be best employed today are not necessarily
the same as those that would produce the most human capital in the long run, especially
when life-cycle dynamics are considered. The framework I develop allows policymakers to
take this into consideration.

Finally, the quantitative model introduced in Section 2 contributes to a burgeoning
literature on dynamic spatial models.18 Because dynamic spatial models can be particu-
larly difficult to solve, spatial economists have compiled a menu of techniques to ease the
computational burden. The simplest is to assume that agents still solve static problems,
be that because agents are explicitly myopic (Peters, 2022) or because, by assumptions
put on technology and market structure, their dynamic objectives reduce to maximizing
only current returns (Desmet and Rossi-Hansberg, 2014).19 The closest such paper to the
present one is Duranton and Puga (2023), who develop a model of growth and agglomera-
tion in which agents are homogeneous and solve only one-period problems. By contrast, the
method I propose allows me to specify a forward-looking migration and investment problem
for heterogeneous workers, which I can then connect explicitly to the data and with which I
can evaluate policies that have anticipatory or protracted effects. Another technique, called
“dynamic hat algebra,” involves specifying a dynamic discrete choice model across labor
markets and solving for counterfactuals in changes from some baseline equilibrium under
perfect foresight (Caliendo, Dvorkin, and Parro, 2019). In recent work, Kleinman, Liu, and
Redding (2023) have extended this method to incorporate forward-looking capital accumu-
lation. Crucially, though, the agents that accumulate capital in their model are not the
workers who migrate; the two groups interact only through markets. In my model, workers
migrate and accumulate human capital jointly, with the rate of the latter depending on the
destination choice of the former.20 A final set of recent papers use similar techniques to
the ones used here (Martellini, 2022; Bilal, 2023; Greaney, 2023). This paper extends those
methods to analyze balanced growth paths.

The rest of the paper is organized as follows. Section 2 presents the model and its
predictions. Section 3 describes the quantitative procedure that casts the U.S. as a dy-
namic spatial knowledge economy. Throughout, I highlight salient features from the data
on the U.S. urban system and workers’ migration and human capital investments within it.
Section 4 uses the quantified model to evaluate the proposed place-based policy. Section 5
concludes.

of location. We leave it to future work to study dynamic and long-run implications of spatial policies when
worker productivity or tastes can change over time through skill formation or as a function of the skill mix
in the community.”

18See Desmet and Rossi-Hansberg (2010) and Rossi-Hansberg (2019) for reviews. The latter advocates
for the type of work I do in this paper: “On the theoretical side, [existing] frameworks are still missing fully
forward-looking dynamics in contexts where agents naturally care about the impacts of their actions in the
future. Modeling forward-looking behavior in dynamic-spatial models with growth is essential when aiming
to characterize optimal government policy, for example. . . . Progress on this front is urgent.”

19See Proposition 1 of their paper and the surrounding discussion. To date, Desmet and Rossi-Hansberg’s
paper and follow-up work (see, e.g., Desmet, Nagy, and Rossi-Hansberg, 2018) have been the best available
solution to the hard problem.

20Recent work by Dvorkin (2023) incorporates life-cycle human capital and wealth accumulation into a
framework that can be solved with dynamic hat algebra. Cai et al. (2023) incorporate productivity growth
into the framework of Kleinman, Liu, and Redding (2023), but growth there is still only semi-endogenous,
which precludes studying the “hard problem.”
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2 Model

2.1 Environment

Time is continuous and indexed by t ∈ R+. There is a finite number of cities n = 1, 2, . . . , N ,
with their set denoted by N . There are two goods in the economy: the consumption good,
which is homogeneous and freely traded, and land. The consumption good is the numeraire.

The economy is populated by a mass L of risk-neutral workers who discount their
future flow utility at rate ρ and live a fixed length of time A, with age indexed by a. Upon
death, a worker is replaced by an entrant somewhere in the economy.21 Each worker born
in city n at date t is endowed with a unit stream of raw labor and an initial level of human
capital, indexed by z, drawn from a distribution with density g

n
(z, t), to be specified later.

The spatial distribution of human capital at any moment t has density gn(a, z, t), to be
determined in equilibrium. If one integrates this density over its full support of ages and
human capital levels and then scales by the total population L, the result is the population
of city n at date t, denoted by Ln(t).

Workers derive utility from the consumption good and land. They cannot write debt
contracts with each other, hence they split all of their income between the two goods at each
date. Land is assumed to be a strict necessity: after renting one unit of it, workers spend
all of their remaining income on the consumption good. A resident of city n with human
capital z at date t pays the flow cost

Pn(z, t) ≡
[
pnLn(t)θn

]
z (1)

for her accommodation in that city. This functional form can be microfounded with a
monocentric city framework wherein commuting costs are paid in forgone earnings, which
will be proportional to a worker’s human capital (see Appendix A.1). Without loss of
generality, the flow utility from land can be normalized to zero. Thus, the worker’s income
allocation problem is always static and trivial, and her flow utility is proportional to her
flow of the consumption good. An exogenous local amenity, Bn, multiplies this consumption
flow.

Workers make forward-looking decisions over where and how to allocate their labor. We
start with where. Migration between cities is subject to two distinct frictions: one governs
the frequency of migration; the other, how much it costs. First, each worker receives the
opportunity to move across cities according to a Poisson process with arrival rate λ > 0,
else she must stay where she is. This proxies for the fixed costs of moving in a manner that
greatly simplifies the analysis.22 Second, if a worker chooses to move to city i from city n,
she must pay a permanent multiplicative flow-utility cost 1/τni, with τnn = 1 for all n ∈ N
and τni > 1 otherwise. Insofar as these bilateral costs are correlated with distance, they
impose a geography on the urban system.

Upon arrival of each migration opportunity, a worker receives a set of preference shocks,
one for each city n ∈ N , that are distributed i.i.d. Fréchet with shape parameter ε > 1.
Like migration costs, the preference shock for the chosen destination is multiplicative and

21That all workers live for the same fixed length of time and are replaced one-for-one upon death implies
that the marginal distribution of age must be uniform for it to be stationary.

22For one, it simplifies the worker’s problem, since she needs only choose a destination conditional on
being mobile, not the timing of the move itself. Moreover, it simplifies how the human capital distribution
evolves, since those who are mobile are just a random subset of the whole population and are therefore
distributed according to the same law.
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permanent. Accordingly, a worker’s flow utility is the product of her flow of the consumption
good and the accumulation of her preference realizations and migration costs along her
chosen migration history.23 Since we will soon take expectations over these preference
shocks, I relegate the full technical description to Appendix A.2 to save on notation in the
main text.

Now we turn to how each worker allocates her labor in a given location. A worker’s
income equals her output. Production uses labor only and is linear in a worker’s effective
labor supply, which is the product of her raw labor allocated to working, 1−s, and her
human capital, z. Production in each city benefits from static agglomeration economies:
labor productivity in city n is log-linear in the local population with a city-specific scale,
Tn, but common agglomeration elasticity, α.24 It follows that a worker in city n supplying
l = (1−s)z units of effective labor will produce (hence earn)

yn(l, t) = [TnLn(t)α] l (2)

units of the consumption good.
Whatever labor she does not use in production is used to invest in her human capital.

The key assumption is that there are local externalities in this investment technology. In
particular, let

dz

dt
= κ(s)zβZn(t)1−β , β ∈ (0, 1), (3)

where κ : [0, 1] 7→ R+ is an increasing, concave function and Zn(t) is a local human capital
index, the vibrancy of city n, given by

Zn(t) ≡
(
L

∫∫
zζ gn(a, z, t) dz da

) 1
ζ

, for ζ > 0. (4)

The vibrancy is a weighted measure of the human capital in a city, accounting for both the
size of the city and the distribution of human capital within it, where ζ governs the relative
weights of those two factors. As ζ → ∞, a city’s vibrancy is determined entirely by the
city’s maximum level of human capital; as ζ → 0, it is determined entirely by the city’s size.
An alternative expression for the vibrancy makes this clear:

Zn(t) = Ln(t)
1
ζ

(∫∫
zζ
gn(a, z, t)

`n(t)
dz da

) 1
ζ

≡ Ln(t)
1
ζ z̄n,ζ(t),

where `n(t) ≡ Ln(t)/L is the population share of city n at time t and thus z̄n,ζ(t) is the
power-ζ mean of human capital within city n at time t. When ζ = 1, the vibrancy decouples
into the product of the city’s size and its arithmetic mean of human capital.

Equations (3) and (4) encode many of the key features of the model. I will highlight
six of them.

Dynamic agglomeration—First, holding fixed the marginal distribution of human capital
within a given city, the returns to investment are strictly increasing in the city’s size. This
is a dynamic agglomeration economy—a mechanism through which city size has a prolonged
positive effect on local productivity—because it quickens the accumulation of human capital
by city residents. Contrast this with the static agglomeration economies introduced in
Equation (2), which have only an instantaneous effect.

23Desmet, Nagy, and Rossi-Hansberg (2018) and Bilal (2023) use similar specifications for preferences.
24Examples of static agglomeration economies include sharing the gains from individual specialization and

improving the quality of matches in a frictional labor market. See Duranton and Puga (2004) for a review.
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Marshallian knowledge spillovers—Second, unlike in models where workers search randomly
for more-productive partners from whom to learn, here workers make continuous use of the
entire stock of local human capital, Zn(t), as they forge their own. This is partly for
technical convenience,25 but it also reflects an observation about local economies first made
by Marshall (1890, p.271): “The mysteries of trade become no mysteries; but they are as
it were in the air.” Of particular note is that a worker need not meet a partner who has
more human capital than she does in order to learn.26 Like chefs swapping recipes, software
developers swapping code snippets, or a chef and a developer discussing the wisdom of mise
en place, both can learn regardless of relative human capital.27 Equation (3) just takes
the further step of asserting that meetings are sufficiently unconstrained in cardinality,
frequency, and duration that we lose little by simply endowing workers with access to stock
of local knowledge, defined in Equation (4).

Moreover, there is no segmentation of the population into inventors/entrepreneurs, for
whom ideas matter, and others, for whom they do not. All benefit from access to knowledge
in the city. As Glaeser (1999, p.255) puts it, reflecting on the same quote from Alfred Mar-
shall, “As impressive as the role of cities in generating new innovations may be, the primary
informational role of cities may not be in creating cutting edge technologies, but rather in
creating learning opportunities for everyday people. . . . [Marshall’s quotation] pertains to
young apprentices learning commonly known mechanical skills in industrial centers, not just
to cutting edge innovations.”

Learning complementarity—Third, the investment technology is supermodular in a worker’s
own human capital and the vibrancy of her location. So highly productive workers benefit
more from living in big cities, especially when those big cities are populated with other
highly productive workers. This complementarity pushes toward sorting of highly productive
workers into bigger cites (Gaubert, 2018). Sorting will not be perfect, though, because other
complementarities and margins of heterogeneity affect migration choices, as we discuss more
in Section 2.3.

Nesting of Ben-Porath model—Fourth, ignoring the external effect from vibrancy, this is
the classical form of the human capital investment technology dating back to Ben-Porath
(1967).28 Workers who live finite lives make on-the-job investments in their general human
capital, using a technology that is concave in both time invested and their current human
capital, forgoing part of their wage, which is proportional to their current human capital,
to do so. The Ben-Porath model specifies κ(s) = κ̄

η s
η with η ∈ (0, 1), so I will use that

functional form in all that follows. Recent empirical work has focused on dissecting general
human capital into firm-, industry-, occupation-, and even task-specific components, but
the classical model does a good job of capturing the life cycle dynamics we are focused on
here (Heckman, Lochner, and Taber, 1998; Sanders and Taber, 2012). We will discuss this
further once the worker’s dynamic program has been presented in Section 2.2.1.

25Random search for an individual learning partner with Poisson arrival would require the law of motion
for a worker’s human capital to be a jump process, where her human capital jumps upon meeting a partner,
with the size of the jump potentially dependent on her own human capital and that of her partner.

26Davis and Dingel (2019, p.159, fn.13) argue that models of idea exchange in which only the lower-
productivity agent benefits from a random meeting, like those in Lucas and Moll (2014) and Perla and
Tonetti (2014), are poorly-suited to be embedded in a spatial economy.

27Berliant, Reed, and Wang (2006) and Berliant and Fujita (2008) consider models in which agents
possessing vectors of task-specific knowledge search for partners with whom to exchange ideas in order to
improve their productivity. Any agent can learn from any other so long as the other’s knowledge vector is
not a strict subset of her own.

28Heckman (1976) and Rosen (1976) are other seminal contributions.
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Costly knowledge spillovers—Fifth, the investment technology bears a purposeful resem-
blance with the analogous technology in Davis and Dingel (2019). Davis and Dingel were
the first to microfound agglomeration as an outcome of costly idea exchange within a system
of cities.29 Both our technologies require costly time investment and feature complementar-
ities between an individual’s skill and the size of and average skill within her city. A key
difference between our models, however, is that, because their model is static, the return
from learning in their environment is instantaneous, whereas in mine the return accrues over
time.30

Affordance of balanced growth—Finally, the investment technology exhibits constant returns
in the pair of human capital measures, (z, Zn). Because production is linear in human
capital, constant returns in the accumulation thereof is a necessary condition for balanced
growth (Jones, 1999). Also, because κ is increasing and concave, the technology exhibits
diminishing returns in time invested, s. Since production is linear in time, the concavity is
needed to ensure that optimal time allocations are interior.

2.2 Equilibrium

2.2.1 Worker’s problem

A worker chooses her labor allocation to maximize her lifetime utility, subject to the learning
process (3) and the migration frictions outlined above, taking the path of local populations
and vibrancies as given. I show in Appendix A.2 that, after taking expectations over her
idiosyncratic preference shocks, the worker’s problem can be written recursively as the
following Hamilton-Jacobi-Bellman equation,

ρVn(a, z, t) = max
s∈[0,1]

{
Bn
[
TnL

α
n(1−s)−pnLθnn

]
z + ∂zVn(a, z, t)

[
κ(s)zβZ1−β

n

]}
+ λ

∑
i

mni(a, z, t) [ξni(a, z, t)Vi(a, z, t)−Vn(a, z, t)]

+ ∂aVn(a, z, t) + ∂tVn(a, z, t),

(5)

with terminal condition
Vn(A, z, t) = 0 for all (n, z, t), (6)

where I have omitted the time arguments from local characteristics, and where

mni(a, z, t) =
τ−εni Vi(a, z, t)

ε∑
k τ
−ε
nk Vk(a, z, t)ε

(7)

is the optimal migration share, whose functional form follows from the preference shocks
being distributed Fréchet with shape parameter ε, and

ξni(a, z, t) =
1

τni
mni(a, z, t)

− 1
ε (8)

29Farrokhi (2021) develops and estimates a static quantitative spatial model with agglomeration forces
that stem from costly idea exchange.

30Davis and Dingel (2019) have a variable called the “value of the local idea-exchange environment” that
is analogous to what I call the vibrancy of the city. Their construction is more complicated insofar as it
weighs levels of human capital not simply by their prevalence (my g) but also by the time that workers with
each level of human capital invest in learning (my s). To copy their construction would require an additional
loop in the algorithm I present in Section 3, so I decline to do so.
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accounts for the selection effect that accompanies optimal migration.31

The Hamilton-Jacobi-Bellman equation has seven distinct components. The left-hand
side is the expected annuity value at date t of a worker of age a with human capital z living
in city n. The first term on the right-hand side is that worker’s consumption flow, the
difference between her income (2) and her urban cost (1), multiplied by the relevant local
amenity. The second term accounts for the change in her value function that comes from
human capital investment according to (3) and (4). A max operator with respect to raw
labor, s, encases the first two terms as the worker trades off consumption today with future
human capital. I denote by sn(a, z, t) the solution to this maximization problem. The third
term is the option value of moving, of which the right to exercise, recall, arrives at rate λ.
With probability mni(a, z, t), defined in (7), the worker exchanges the value of her current
location n for that of her new location i. The latter is multiplied by ξni(a, z, t), defined in (8),
to account for the underlying selection of her idiosyncratic optimal destination.32 Notice
that even when a worker chooses to stay put, which occurs with probability mnn(a, z, t),
she still receives the selection bonus. Now looking at the last line, the fourth term on the
right-hand side captures the aging of the worker. The fifth term accounts for the change in
value over time as the economy evolves.33 Finally, the terminal condition in (6) states that
the value at death is zero regardless of location, human capital, or date.

2.2.2 State evolution

Local populations and vibrancies evolve in accordance with the spatial distribution of human
capital, summarized by its density g. The density follows a Kolmogorov forward equation

∂tgn(a, z, t) = −∂z[hn(a, z, t)gn(a, z, t)]− λ[1−mnn(a, z, t)]gn(a, z, t)

+ λ
∑
i 6=n

min(a, z, t)gi(a, z, t)− ∂agn(a, z, t), (9)

with initial condition gn(0, z, t) = 1
Agn(z, t), where

hn(a, z, t) = κ[sn(a, z, t)]zβZn(t)1−β (10)

is the optimally-controlled drift of an individual worker’s human capital and, recall, g is the

density from which each new worker’s human capital is drawn.34

The Kolmogorov forward equation has six distinct components. The left-hand side
is the instantaneous change in the density at a particular point (n, a, z) of the state space
at date t, so it will be natural to describe the right-hand side in terms of flows of workers
into or out of that point of the state space. The first term on the right-hand side is the
outflow along the productivity dimension that comes from investment, where hn(a, z, t),
defined in (10), measures the speed of the flow and gn(a, z, t) measures how many workers
are “traveling” at that speed. The second term is the gross outflow of (a, z)-workers from

31Workers select their optimal migration destination after observing their idiosyncratic preference shocks.
The mean value of a worker conditional on this choice is then strictly greater than the unconditional mean.

32Because ξni(a, z, t) is just a transformation of mni(a, z, t), the Hamilton-Jacobi-Bellman in (5) is equiv-
alent to that of a representative agent in state (n, a, z, t) who maximizes with the set of continuous control
variables {sn(a, z, t),mn·(a, z, t)} subject to the constraint

∑
imni(a, z, t) = 1. See Appendix A.2 for a

more detailed discussion.
33Although the pace of aging conforms with calendar time, the fourth and fifth terms are not the same.

One can see this by holding t fixed and thinking about what it means to vary a, and vice versa.
34See Appendix A.3 for a heuristic derivation of the Kolmogorov forward equation.
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city n. The third term is the gross inflow of the same type of workers from other cities.
Flows go both ways because of the idiosyncratic preference shocks. In general, the two terms
will not cancel because different cities have different marginal densities at (a, z). The fourth
term is the outflow along the age dimension. Finally, the initial condition states that the
marginal human capital density at entry is given by g.

2.2.3 Equilibrium

In an equilibrium, workers invest and migrate optimally given the evolution of location
characteristics, the underlying distribution evolves as workers’ choices dictate, and at ev-
ery moment the distribution integrates properly to the location characteristics. A formal
definition follows.

Definition 1. An equilibrium is a tuple of functions {V, s,m, g} on N × [0, A]×R++×R+

and a tuple of functions {L,Z} on N × R+ such that

(i) workers solve the Hamilton-Jacobi-Bellman equation (5), taking paths of populations
L and vibrancies Z as given;

(ii) the density gn(a, z, t) evolves according to the Kolmogorov forward equation (9), taking
workers’ optimal decision rules as given;

(iii) populations and vibrancies satisfy their definitions given gn(a, z, t):

Ln(t) = L

∫∫
gn(a, z, t) dz da, Zn(t) =

(
L

∫∫
zζ gn(a, z, t) dz da

) 1
ζ

;

(iv) local population shares sum to one for all t:

1 =
∑
n∈N

Ln(t)

L
=
∑
n∈N

∫∫
gn(a, z, t) dz da.

The equilibrium of this economy is an example of a mean field game. In a mean field
game, each agent is one of infinitely many rational players controlling her own state (here,
her human capital, current location, and age, though the last one is uncontrolled). Agents
are indistinguishable modulo their state, so an agent does not care what any other particular
agent does, since the latter’s action would be drowned out regardless. Instead, each agent
only needs to track the distribution across states (here, the density g). The resulting Nash
equilibrium is the natural extension of a rational expectations equilibrium to an economy
populated by heterogeneous agents.35

2.2.4 Balanced growth paths

A complete analysis of this economy would require the ability to calculate solutions for
all initial distributions. I limit myself in this paper to the analysis of a set of particular
solutions for which the growth rate and the distribution of relative human capital are both
constant over time.

35With a representative agent, the distribution is degenerate at what one would call the “aggregate state.”
An equilibrium would require that the state of the representative agent be consistent with this aggregate
state, as in the “big K, little k trick” (Ljungqvist and Sargent, 2018, §12.8.1).
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Definition 2. A balanced growth path (bgp) is a number γ ∈ R+ and functions (v, σ, µ, φ)
on N × [0, A]× R++ such that

Vn(a, z, t) = eγt vn (a, x)

sn(a, z, t) = σn (a, x)

mni(a, z, t) = µni (a, x)

gn(a, z, t) = e−γt φn (a, x)

and (V, s,m, g) is an equilibrium with initial condition gn(a, z, 0) = φn(a, z), where x ≡
ze−γt is relative human capital.

A bgp is an equilibrium path along which the marginal distribution of age is stationary
and the marginal distribution of human capital evolves as a “traveling wave,” holding its
shape while shifting to the right at a constant rate γ. To hold its shape, the distribution
must have its quantiles growing at the same rate: letting capital letters denote cumulative
density functions, the bgp requires Gn(a, z, t) = Φn(a, ze−γt) for any (n, a), hence the qth
quantile zqn(a, t), defined by Φn(a, zqn(a, t)e−γt), must satisfy

zqn(a, t) = eγt[Φn(a)]−1(q).

That the value function and decision rules take the forms given in Definition 2 follows
immediately.

If workers lived forever, each could learn ad infinitum, hence so too could the human
capital distribution shift to the right. But workers here live only finite lives, so how the
population turns over will play a critical role in enabling balanced growth. To that end, I
assume that the human capital distribution of entrants, summarized by the density g, tracks
the human capital distribution of existing workers in the following way.

Assumption 1. The c.d.f. of initial human capital, G, whose density is g, satisfies two
conditions: (i) its human capital quantiles grow at the same rate as those of G; (ii) the lower
bound of its support is strictly positive and also grows at this rate.

For example, G could be uniform over an interval of fixed relative size around, say, the
25th-percentile of G. For another, G could be a two-sided truncation of G with the same
bounds. In any case, Assumption 1 has the interpretation that successive cohorts enter the
labor market with more human capital because, for instance, they spent an unmodeled pre-
period (call it “compulsory schooling”) learning from previous cohorts, whose median level
of human capital is growing at rate γ. The productivity growth of labor market entrants
is therefore still endogenous because it is piggybacking on that of current workers. This
growth is also an additional externality because current workers do not account for the
effect of their investments on future entrants.

Assumption 1 is necessary because it ensures two things. First, there is a well-defined
detrended density φ

n
(x) ≡ eγtg

n
(z, t). Second, the lower bound of the equilibrium support

will be strictly positive, so no worker will get stuck at z = 0, which is an absorbing state.
Under Assumption 1, the conditions of a balanced growth path can be restated in

terms of relative human capital. First, restate the location fundamentals as

Ln ≡ L
∫∫

φn(a, x) dx da, Xn ≡
(
L

∫∫
xζ φn(a, x) dx da

) 1
ζ

, (11)
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so Ln(t) = Ln and Zn(t) = eγtXn for all t. The former implies that the city size distribution
is invariant along a bgp. The Hamilton-Jacobi-Bellman equation (5) becomes

(ρ− γ)vn(a, x) = Bn
(
TnL

α
n[1− σn(a, x)]− pnLθnn

)
x

+ ∂xvn(a, x)
(
κ[σn(a, x)]xβX1−β

n − γx
)

+ λ
∑

i
µni(a, x) [ξni(a, x)vi(a, x)− vn(a, x)]

+ ∂avn(a, x)

(12)

with boundary condition vn(A, x) = 0 for all (n, x). Notice that the relevant discount rate is
now ρ−γ, which I assume is positive, and the relevant drift is now the difference between how
much human capital the worker accrues, κ[σn(a, x)]xβX1−β

n , and how much the underlying
human capital distribution shifts, γx. In the space of relative human capital, if a worker does
not accumulate human capital quickly enough, she falls behind. The Kolmogorov forward
equation (9) becomes

0 = −∂x
{(
κ[σn(a, x)]xβX1−β

n − γx
)
φn(a, x)

}
− λ[1− µnn(a, x)]φn(a, x) + λ

∑
i 6=n

µni(a, x)φi(a, x)

− ∂aφn(a, x)

(13)

with boundary condition φn(0, x) = 1
Aφn(x) for all (n, x). Total production on a bgp is

given by

Yn(t) = eγtL

∫∫
TnL

α
n[1− σn(a, x)]xφn(a, x) dx da, Y (t) ≡

∑
n

Yn(t),

so production, too, grows at rate γ. The definitions of the detrended decision rules will be
shown in the next section. All derivations are shown in Appendix A.4.

2.3 Properties of a balanced growth path

A balanced growth path must satisfy Equations (11)–(13) in addition to an equation that
determines the growth rate γ. I will show that the growth rate can be written as a weighted
average of returns to investment in human capital across workers, with larger weight given
to the investment that happens in more vibrant cities. First, though, I establish properties
of workers’ decision rules and the cross-section of cities for a generic γ.

2.3.1 Characterization of worker decision rules and city aggregates

The following lemma will prove useful throughout this section.

Lemma 1. The value function vn(a, x) is decreasing in age, a, and increasing in relative
human capital, x. Moreover, the second partial ∂x,xvn(a, x) is always non-positive, as is the
cross partial ∂a,xvn(a, x).

Unsurprisingly, for a given relative human capital, a worker would prefer to be younger,
and for a given age, she would prefer to be more productive. The signs on the second-order
partial derivatives are not much more difficult to see. A formal proof is in Appendix A.4.
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Worker decision rules—Consider the optimal investment rule along the bgp,

σn(a, x) =

(
κ̄ ∂xvn(a, x)

BnTnLαn

(
Xn

x

)1−β
) 1

1−η

. (14)

where, recall, κ(σ) = κ̄
ησ

η. We are interested in how investment varies with worker states

and city characteristics according to (14). For states, one must consider both the direct effect
and the indirect effect that is mediated through the value function. For city characteristics,
one must do the same, keeping in mind that the indirect effects will also be mediated through
the composition of residents that the city attracts, which determines its vibrancy.

By Lemma 1, the investment rate is weakly decreasing in an individual’s relative human
capital, x, for any fixed age. Relative to a worker in the same city with less human capital,
a more productive worker faces diminished returns (at rate β) to using her human capital
in investment but undiminished returns to using it in production, so she optimally shifts
more of her labor toward production. This does not imply by itself that her accumulation
of human capital is slower—the higher x may more than offset the lower κ(σ) in the drift
component κ(σ)xβX1−β

n . Conditional on human capital, accumulation is slower for older
workers, though, because Lemma 1 ensures that the marginal value of relative human capital
∂xvn(a, x) is non-increasing in a.36

The effects of location are much more difficult to disentangle, at least in part because
it is not obvious how ∂xvn(a, x) will vary across cities for given arguments.37 The direct
effects on investment of better amenities, Bn, higher fundamental productivity, Tn, and
larger city size, Ln, are all negative, as they raise the return to allocating labor to production
today. The direct effect on investment of greater vibrancy, Xn, by contrast, is positive, as
it raises the return to allocating labor to investment. The total effect of any of these city
characteristics on investment, however, is, in general, ambiguous: changes in fundamentals,
for example, will induce changes in city size and skill composition in equilibrium that are
potentially offsetting on the incentive to invest.38 These conclusions are summarized in the
following proposition.

Proposition 1. The optimal investment rule along the bgp, σn(a, x), is non-increasing in
both age, a, and relative human capital, x, but varies ambiguously across cities, n, for any
state.

Now consider the optimal migration rule along the bgp,

µni(a, x) =
τ−εni vi(a, x)ε∑
k τ
−ε
nk vk(a, x)ε

, (15)

which specifies the probability with which a worker of age a and relative human capital
x living in city n would choose to migrate to city i upon the arrival of an opportunity

36Contrast this with a perpetual youth model, wherein the age of an agent has no effect on her decisions
because her hazard rate of death is always the same.

37Total land costs, for example, vary with both location and individual human capital, which means they
affect σ indirectly through this term.

38The total effect on investment of increasing fundamental productivity in city n, for example, is

d lnσn(a, x) =

(
1

1− η

)[
d ln (∂xvn(a, x))

d lnTn
+

(
1− β
ζ
− α

)
d lnLn

d lnTn
+ (1− β)

d ln x̄n,ζ

d lnTn

]
d lnTn

where I split vibrancy into its size and composition components.
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shock. As Equation (15) makes clear, how migration decisions vary with individual states
and location characteristics is mediated almost entirely through the corresponding variation
in the expected value function. This makes it difficult to tease apart how each model
component affects migration rates. Nevertheless, one can make four observations.

First, workers are generally attracted to nearby or centrally-located vibrant cities with
high amenities and high consumption net of urban costs (e.g., high Tn and low pn), since
each of these features either saves on τ today or raises the value v. The value is fully
forward-looking, so it accounts for the effect of location on a worker’s lifetime consumption
profile, not just her current consumption. Workers may choose to move to a city that affords
them lower consumption today if it allows them to accumulate human capital more quickly.
This is consistent with the “location as an asset” view of Bilal and Rossi-Hansberg (2021).39

Second, as previewed in Section 2.1, sorting on individual human capital is imperfect.
Because of the extreme-value specification of preference heterogeneity, the share in (15) is
strictly positive for any state (n, a, x) and destination i, which implies that all ages and
relative human capital levels will be present in any given city i.

That is not to say the proportions in which they are present will be the same, though,
which brings one to the third observation: different cities may be disproportionately young
or skilled or varied along either dimension. A city’s particular mix of fundamentals, agglom-
eration and congestion forces, and skill composition will attract different types of workers
to varying degrees.40 A young worker, for example, would typically care more about the
vibrancy of a city than would an old worker, because the young worker would typically
invest more of her time in learning.

The final observation is that age also has a secondary effect on migration: as a worker
approaches the end of her lifespan, her value function approaches zero for any (n, x). It
follows from (15) that the bilateral costs {τni} play an increasingly large role in determining
migration decisions. With τnn = 1 < τni for all i 6= n, it further follows that the old move
less, even for a fixed rate of opportunity shocks, λ. This is consistent with the evidence that
I will discuss in Section 3.

These conclusions are summarized in the following proposition.

Proposition 2. The optimal migration rule along the bgp, µni(a, x), favors nearby or
centrally-located vibrant cities with high amenities and high consumption net of urban costs,
with different weights placed on each feature by workers in different states. Nevertheless, at
least some workers in each state move to each destination.

City aggregates—Cities result from the balance of agglomeration and congestion forces.
Net of differences in fundamentals, larger cities along a bgp are more productive because
α > 0.41 Larger cities are also generically more vibrant because ζ > 0.42 It follows that, for
a fixed investment rate, the model generates a city size earnings premium with both static

39Bilal and Rossi-Hansberg (2021) focus on the substitution between the location asset and another riskless
asset when there is a borrowing constraint on the latter, which I do not consider here, but their specification
of human capital accumulation is more stylized.

40Of course, the size and composition of each city is itself an equilibrium outcome determined by the
migration choices of different types of workers.

41Allowing for heterogeneous fundamentals will make it possible in Section 3 to match observed patterns
in U.S. cities, where there is not a strict ordering of cities’ productivity and costs by size.

42Technically, it is possible for a city’s vibrancy to decrease with its size if its power mean of human
capital declines sufficiently quickly with size, i.e., if

d ln x̄n,ζ

d lnLn
< −

1

ζ
.
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and dynamic components: a worker’s earnings jump upon moving to a bigger city, and her
earnings profile gets steeper because her returns to investment are higher in the more vibrant
place. This is consistent with the evidence in Glaeser and Maré (2001), Baum-Snow and
Pavan (2012), and Duranton and Puga (2023) for U.S. cities, which I will use to quantify the
model in the next section. Workers trade off the benefits of the immediate earnings premium
and the steeper earnings profile in bigger cities against higher urban costs (with elasticity
θ) and lower average flow utility (with elasticity ε) operating through the idiosyncratic
preference shocks. These conclusions are summarized in the following proposition.

Proposition 3. Net of differences in city fundamentals, larger cities along a bgp are
always more productive and more costly. In addition, larger cities are generically more
vibrant. The model therefore generates a city size earnings premium with both static and
dynamic components.

2.3.2 Characterization of the growth rate

The growth rate γ is determined by integrating (in the sense of Lebesgue) the Kolmogorov
forward equation (13) over the state space and leveraging two facts: (i) there is no net
migration on a bgp (Equation (11)), and (ii) the marginal density with respect to age is
uniform. With a bit of calculus, solving for γ yields the following proposition.

Theorem 1. A balanced growth path characterized by the functions {v, σ, µ, φ} has the
growth rate

γ =

∑
n

∫ A
0
κ[σn(a, x)]xβX1−β

n φn(a, x) da∑
n

∫ A
0
xφn(a, x) da

, ∀x ∈ supp(φ). (16)

Proof. See Appendix A.4.

The expression in (16) is a natural extension of the representative-agent, one-location
case from Uzawa (1965). In what follows we will build intuition for (16) by rebuilding the
present model step-by-step atop Uzawa’s.

Uzawa (1965) as a foundation—Uzawa’s model can be summarized in one optimization
problem:

V [z(0)] = max
s∈[0,1]

∫ ∞
0

e−ρt[1− s(t)]z(t) dt

s.t. ż(t) = κ[s(t)]z(t),

where κ is increasing and concave.43 That is, the representative consumer splits her labor
between learning, with fraction s, and producing, with fraction 1− s, in order to maximize
the present discounted value of her output, subject to the specified learning technology.
Under the assumption that κ(1) < ρ < κ(0) + κ′(0), the optimal time allocation s∗ is
interior, unique, and implicitly defined by κ′(s∗)(1 − s∗) = ρ − κ(s∗). Moreover, a unique
balanced growth path exists, and its growth rate is γ ≡ κ(s∗) < ρ.44

But, since we generally expect higher ability workers to sort into bigger cities because of the supermodularity
in consumption and learning, I leave this aside as a pathological case.

43This statement of Uzawa’s model abstracts from physical capital and population growth.
44This underscores a point first made by Mulligan and Sala-i Martin (1993): In Uzawa (1965) and Lucas

(1988), although a human capital externality in production or investment would affect the rate of balanced
growth, such an externality is not required to sustain balanced growth. It is sufficient that the investment
technology be linear in z.
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Reintroduce the learning externality—The representative agent in Uzawa’s economy now
faces the law of motion

ż = κ(s)zβZ1−β ,

where z is her own human capital and Z is the aggregate stock, which the agent takes as
given. Of course, in equilibrium the two must be the same, but because the agent does not
internalize her effect on the aggregate, she underinvests. Indeed, her optimal time allocation
s∗1 becomes implicitly defined by κ′(s∗1)(1 − s∗1) = ρ − βκ(s∗1), hence it is strictly less than
s∗. By the monotonicity of κ, the growth rate, too, is lower than before.

Reintroduce the finite investment horizon—Suppose that instead of living indefinitely, the
representative agent dies with a fixed hazard rate δ, after which she bequeaths her human
capital to her replacement.45 Then optimal time allocation s∗2 becomes implicitly defined by
κ′(s∗2)(1− s∗2) = ρ+ δ−βκ(s∗2), hence it is strictly less than s∗1. With a shorter horizon over
which to reap the returns from her human capital, she invests less. By the monotonicity of
κ, the growth rate, too, is even lower.

Reintroduce worker heterogeneity—Now instead of a representative agent, let workers vary
in their human capital. Let workers vary in their age, too, by imposing that workers die
after a fixed length of time instead of at a fixed hazard rate. This implies that there will
be a distribution of workers over the age-by-human capital state space, the density of which
I denote by g. This distribution will evolve over time, so we need a Kolmogorov forward
equation to specify precisely how it evolves. Its evolution will determine how the aggregate
stock of human capital grows, because the stock must now be computed as an integral with
respect to this distribution, Z(t) = L

∫∫
z g(a, z, t) dz da.46 Workers will choose different

investment rates depending on their state, so—unlike in the last two steps—we cannot
identify a single rate s∗3 that pins down the growth rate as κ(s∗3). But what we can do
should be intuitive: the growth rate is a weighted average of returns to time invested,
κ[σ(a, x)], and indeed I find that the correct weighted average is

γ =

∫ A
0
κ[σ(a, x)]xβX1−β φ(a, x) da∫ A

0
xφ(a, x) da

, ∀x ∈ supp(φ),

where I use the same notation for detrended functions and variables as we have been using
above.47

Reintroduce cities and migration—Finally, allow the workers to migrate between a finite set
of cities and restrict the learning externality to be local in scope. Then the growth rate
becomes as stated in (16). The growth rate is again a weighted average of the returns to
time invested, but now more vibrant locations get more weight. Despite the fact that cities
vary in their vibrancy, all cities grow at the same rate γ on the bgp because migration acts
as a form of knowledge diffusion. As workers flow between cities according to (15), they
bring their human capital with them.48 So although there is no net migration on the bgp,

45This is not the same as specifying a finite lifespan for each agent, but that specification would imply
heterogeneity, which I wait to introduce in the next step.

46This is the simplest possible stock measure. My definition of vibrancy takes the additional step of
introducing curvature, governed by the parameter ζ, in order to adjust the weight placed on different
features of the skill distribution.

47Note that the average is taken only across ages and must be equated for each level of relative human
capital. This ensures that each quantile of the distribution grows at the common rate.

48Contrast this with models like that in Eaton and Eckstein (1997), which must assume an ad hoc
technology diffusion across cities.
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the gross migration of workers through the urban system spreads the gains from human
capital accumulation across the whole system.

Summary—The preceding steps reveal a few key insights. Most importantly, they reveal
that the spatial distribution of human capital does matter for aggregate growth. Indeed,
the aggregate growth rate (16) is the weighted average of returns to investment in human
capital across workers, with larger weight given to the learning that happens in more vibrant
(roughly, bigger and more skilled) cities. Investment rates vary with workers’ age, human
capital, and location. Relative to an infinitely-lived planner, workers underinvest because
(i) they have a shorter horizon over which to reap the benefits of their human capital and
(ii) they do not internalize the local learning externality.

2.3.3 Well-posedness of a balanced growth path

Proposition 1 established that if a balanced growth path characterized by the functions
{v, σ, µ, φ} exists, it must have the growth rate specified in Equation (16). This left aside
whether there exists an entire path {v, σ, µ, φ, γ} that solves (11)–(15) and (16) uniquely.

To date, the well-posedness of solutions to this class of coupled partial differential
equations has not been proven.49 Nevertheless, I take the following measures to ensure that
my results are well-behaved. First, I impose βκ(1) < ρ < βκ(0) + κ′(0), which guarantees
the existence of a unique solution in the Uzawa model with an externality described in
Section 2.3.2.50 Second, I show in Section 3 that a solution exists to the discretized version
of the bgp system under my chosen parameters. Those parameters are chosen so that the
bgp matches a number of moments in the data. Re-solving the model with those parameters
from different initial conditions consistently recovers the same bgp, suggesting that the
observed bgp is locally unique and stable. Third, when solving the policy counterfactual
in Section 4, I follow Ahlfeldt et al. (2015) in selecting the closest counterfactual bgp by
using the baseline bgp as the initial value for the solver.

3 Quantitative analysis

In this section I describe how I quantify and compute a bgp. I begin by describing the
algorithm I use to compute a bgp given model primitives. I then detail how I quantify those
primitives using U.S. data. Finally, I plot workers’ decision rules and city characteristics in
order to compare them to targeted and untargeted moments from the data.

3.1 Algorithm to compute a BGP

The algorithm, adapted from Achdou et al. (2022), is a fixed-point algorithm that iterates on
a vector of length 2N+1 containing the aggregate variables {L,X, γ}. Within each iteration,
I use finite difference methods to solve the coupled partial differential equations (12) and (13)
that characterize allocations along the bgp. This involves discretizing the continuous state

49In standard quantitative spatial models, the existence of a unique equilibrium is typically established
by a condition on the agglomeration and congestion elasticities that translates as “congestion forces always
dominate agglomeration forces” (Redding and Rossi-Hansberg, 2017). Such a condition cannot be stated
here in part because the dynamic agglomeration force depends on the marginal distribution of human capital
within each city, which is a nonparametric equilibrium object.

50With κ(σ) = κ̄
η
ση for η ∈ (0, 1), this translates to simply βκ̄ < ρη since κ(0) + κ′(0) =∞.
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space and leveraging the sparsity that comes from working in continuous time to compute
and manipulate a large transition matrix.51 Appendix C provides the full details.

Algorithm 1: Compute a bgp
Data: parameters {A, ρ, λ, ε, α, ζ, β, η, κ̄, xscale},

location fundamentals {Bn, Tn, pn, θn, τni}, and
relative productivity distribution of entrants φ

Result: bgp {v, σ, µ, φ; γ}
Initialize with guess {L0,X0, γ0}. Denote iterations by ι = 0, 1, 2, . . .;
while not converged do

1Given {Lι,Xι, γι}, solve the Hamilton-Jacobi-Bellman equation (12) using a
finite difference method and calculate the decision rules σιn(a, x) and µιni(a, x);

2Given σιn(a, x) and µιni(a, x), solve the Kolmogorov forward equation (13) for
φιn(a, x) using a finite difference method;

3Given φιn(a, x), compute the corresponding local populations and vibrancies

L̃ιn = L

∫∫
φιn(a, x) dx da, X̃`

n =

(
L

∫∫
xζφ`n(a, x) dx da

) 1
ζ

for each n, and compute the implied growth rate

γ̃ι =

∑
n

∫ A
0
κ[σιn(a, x)]xβ(Xι

n)1−β φιn(a, x) da∑
n

∫ A
0
xφιn(a, x) da

, x ∈ supp(φι)

as defined in (16);

if {L̃ι, X̃ι, γ̃ι} close enough to {Lι,Xι, γι} then
converged;

else
construct {Lι+1,Xι+1, γι+1} as a linear combination of the previous guess
and the computed values;

end

end

3.2 Quantification

The Data line of Algorithm 1 lists the model primitives that must be set in order to calculate
a bgp. To quantify them, I proceed in multiple steps. Throughout, I will make a number of
choices that facilitate matching estimates from the human capital literature and Duranton
and Puga (2023, Table 2). All data descriptions are in Appendix B.

Select cities and set congestion elasticities, {N , θn}

I start with the 378 Metropolitan Statistical Areas (msas) that had populations exceeding
75,000 people in the 2010 U.S. Census.52 Because the number and sizes of cities matters for

51Rendahl (2022) demonstrates under what conditions similar computational speed can be achieved in
discrete time.

52Throughout, I define msas using the February 2013 delineation of the Office of Management and Budget
(omb) whenever possible. Exceptions are noted explicitly in Appendix B.
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workers’ decisions in the model, it is important to represent the entire U.S. urban system.
At the same time, the number of parameters to be estimated scales linearly with the number
of cities, and the state space scales quadratically, so incorporating all 378 msas individually
is prohibitively costly. Instead, I assign cities to groups based on metropolitan population
in 2010. Any msa that had a population greater than 2 million (of which there are 30) is in
a group by itself. Below 2 million, groups are incremented by 500,000, so there are 4 such
groups and 34 groups in total. The crucial restriction is that cities in the same group are
forced to be identical. So Rochester, NY and Memphis, TN, both with 2010 populations
between 1 million and 1.5 million, for example, are modeled as two copies of the “1.0M-
1.5M” city. Accordingly, there are 378 cities in the model but only 34 types of cities among
which workers choose.

I set the congestion elasticity in each city equal to the elasticity of housing supply
estimated by Saiz (2010).53 These estimates are determined primarily by land availability
and land use regulations in each city. In groups with multiple cities, I use the population-
weighted mean elasticity.

Set migration parameters, {λ, ε, τni}, using ACS data

The 2011–15 American Community Survey (acs) Migration Flow files aggregate over five
years of surveys to provide counts of respondents who changed residence within the last
year, cross-tabulated by age bin.54 For each age bin and origin msa, one can observe the
count of residents that (i) did not move, (ii) moved within the same msa, (iii) moved to
each of the other possible destination msas, or (iv) moved to a non-metropolitan or foreign
location.

The parameter λ can be computed directly from these data. Recall that migration
opportunities arrive according to i.i.d. Poisson processes at rate λ. It follows that a fraction
λ of the population will be allowed to move each year. Since within-msa moves are observed
separately from non-moves, I simply set λ equal to the overall fraction of urban residents
that move.55 In light of the many age-varying determinants of migration that are not
modeled explicitly here, however, I now allow λ to vary with age, λ(a), which decreases
monotonically from 26.6% at age 20 to 7.6% at age 59.56

The parameter ε governs the migration elasticity with respect to a worker’s value,
which is the present discounted sum of her lifetime real consumption. I set ε = 3 based on
estimates of the migration elasticity with respect to real wages at decadal frequency from
Diamond (2016, Table 5, pp.505–8).

53In 19 cities, Saiz (2010) data are missing. In those cases, I follow Hsieh and Moretti (2019) in imputing
the elasticity from the relevant state average.

54Age is broken down into the following fifteen categories: 1 to 4 years, 5 to 17 years, 18 to 19 years, then
five-year bins through age 74, and a final bin for 75 years and over. Consistent with the age restriction I
impose later, I only consider flows by those from age 20 through age 59.

55This approach will match overall mobility rates in the data, but it likely understates the rate at which
one might think workers have the opportunity to move because it conflates potential movers who choose to
stay in their current residence with those unable to move. All qualitative results are robust to using higher
values of λ.

56Consider that the likelihood of marriage, child-rearing, and homeownership are all typically increasing
from young adulthood through at least middle age, and each increases the cost of moving. See, for example,
Mincer (1978) on family ties in general, Costa and Kahn (2000) on the colocation problem of married couples
specifically, and Oswald (2019) on homeownership. Kennan and Walker (2011) estimate a positive direct
effect of age on moving costs in addition to its effect on moving decisions through their human capital
channel.
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To compute the bilateral migration frictions, I use the calibrated migration elasticity
to invert the implied frictions from the flows I observe in the acs. In particular, I construct
a Head-Ries migration index

µ̄niµ̄in
µ̄nnµ̄ii

=
τ−εni τ

−ε
in

τ−εnn τ
−ε
ii

, (17)

where µ̄ni is the average likelihood over all ages and relative productivities of moving from
n to i conditional on moving.57 Under the assumption that τnn = 1 for all n and τni = τin
for all n, i, the index reduces to

− 2ε ln τni = ln

(
µ̄niµ̄in
µ̄nnµ̄ii

)
, (18)

where the right-hand side is directly observed. I do this first at the level of individual cities,
where τnn = 1 is a tenable normalization. To aggregate to the group level, I use the flow-
weighted average of bilateral costs for moves across cities within the same group to set the
group-level τnn. So in the 30 groups with only one city, we still have τnn = 1, but in the
4 groups with multiple cities, we have τnn > 1. With the group-level own cost τnn, I then
compute the group-level bilateral cost τni using the formula in (17) while maintaining the
assumption of symmetry, where the flows are now summed across groups.

Set general human capital investment parameters, {A, ρ, β, η, φ
n
}

As highlighted in Section 2, my framework embeds the classic model of general human
capital investment from Ben-Porath (1967) into a spatial general equilibrium. A large
empirical literature has estimated structural versions of the Ben-Porath model.58 Insofar
as I can demonstrate that the additional structure of my framework is consistent with or
independent of the Ben-Porath model, I can credibly use these estimates to calibrate some
of my parameters.

My calibration draws most heavily from three sources. The first is Browning, Hansen,
and Heckman (1999), which reviews structural estimates of the Ben-Porath model. The sec-
ond is Heckman, Lochner, and Taber (1998), which extends the Ben-Porath model to allow
for an up-front choice of total schooling (high school vs. college) and coarse heterogeneity
in initial stocks of human capital (four groups). The authors estimate their model using
data on white males in years 1979–1993 from the nlsy. The third is Huggett, Ventura, and
Yaron (2006), which extends the Ben-Porath model to allow for a continuous distribution
of initial stocks of human capital. The authors estimate their model using data on males
from the psid 1969–1992 family files. Collectively, these three sources demonstrate that
the Ben-Porath model is consistent with observed patterns such as the concentration at
young ages of time allocated to skill acquisition and the steepness of age-earnings profiles
for people who choose high amounts of schooling. Moreover, when augmented to include
worker heterogeneity, the Ben-Porath model does well in replicating trends in mean earnings
and measures of earnings dispersion and skewness over most of the working life-cycle for a

57Head and Ries (2001) first proposed an index of this sort to back out a measure of trade costs from
observed trade flows. Taking averages across ages and relative productivities and later aggregating to groups
ensures that the matrix of flows is dense and limits concerns about overfitting (Dingel and Tintelnot, 2021).

58An even larger literature estimates the Mincer (1974) model, which was originally derived as an approx-
imation of the Ben-Porath model. Heckman, Lochner, and Todd (2006) surveys this literature.
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typical cohort as the cohort ages.59

Recall a typical worker’s decision problem as specified in the Hamilton-Jacobi-Bellman
equation (12). She takes city aggregates and the pace of growth as given, so in quantifying
her investment problem we are free to consider these variables as exogenous. The horizon
of her decision problem is determined by her lifespan, A, and her discount rate, ρ. I set
A = 40, so the lifespan accords with ages 20 through 59. This choice is motivated by a
few considerations. First, within this age band, a uniform age distribution is an adequate
assumption: in the 2010 Census, there were roughly 20 million people in each five-year
age bin up to age 60. Second, near the full Social Security retirement age of 67 there is
a substantial fall in labor force participation that occurs for reasons not considered in my
model. This suggests using an earlier terminal age. Third, it is consistent with Huggett,
Ventura, and Yaron (2006), who emphasize the relative lack of data availability in the psid
outside this age range. For the discount rate, I set ρ = 0.10, which exceeds the typical
annual discount rate set in most macroeconomic models, to account for missing curvature
in the worker’s flow utility function.60 In particular, with linear utility, workers may be
willing to accept negative flow payoffs in exchange for sufficient wage growth.61 A higher-
than-usual discount rate stands in for a finite intertemporal elasticity of substitution to curb
this behavior.62

Her investment technology is characterized by two elasticities: β, which governs the
marginal productivity in investment of a worker’s current human capital, and η, which
governs that of her time. I set β = 0.8, which accords with the best-fitting parametric
model estimated by Huggett, Ventura, and Yaron (2006, Table 2, Panel B, Column 4) and
falls just shy of the estimates in Heckman, Lochner, and Taber (1998, Table 1).63 With
panels of only a few thousand workers at most, few studies using U.S. data can reject the
neutral Ben-Porath model in which η = β. One implication of this neutrality, however, is
that human capital accumulation raises the marginal cost of human capital investment and
the marginal productivity of human capital investment in the same proportion. It follows
that the optimal accumulation would be independent of x. This contradicts evidence from
De la Roca and Puga (2017) on a much larger panel of Spanish workers that the additional
value of experience in bigger cities is stronger for those with higher ability. With this in
mind, I set η = 0.7, which still falls within the range of estimates reviewed by Browning,
Hansen, and Heckman (1999).

The preceding discussion passed over two sources of potential misspecification. First,
alongside her investment, the typical worker in my model makes a simultaneous migration
decision. Notice, though, that her migration decision interacts with her investment deci-

59Huggett, Ventura, and Yaron (2006) show that heterogeneity in learning ability, not just initial human
capital, is required to generate a positive trend in earnings dispersion in their model. This is not true in
my framework because of heterogeneity in returns to learning across locations: if higher-skilled workers
sort sufficiently into vibrant environments, my model can generate a positive trend in earnings dispersion
without incorporating individual heterogeneity in learning ability.

60Huggett, Ventura, and Yaron (2006) use linear utility with the equivalent of ρ = 0.04, but they calibrate
to much lower wage growth (0.14% per year) and a positive depreciation rate (1.14% per year). Heckman,
Lochner, and Taber (1998) use ρ = 0.05 and zero depreciation but specify an isoelastic utility function with
coefficient of relative risk aversion equal to 0.9.

61This occurs, for example, if a worker sets σ = 1 because she must still pay the urban cost.
62The goal is not necessarily to rule out this behavior, however, because accepting negative flow payoffs

in exchange for sufficient wage growth is itself a form of borrowing and saving that is otherwise precluded
in this model.

63Heckman, Lochner, and Taber (1998) estimate β = 0.832 (S.E. 0.253) for high school and β = 0.871
(S.E. 0.343) for college-educated workers.
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sion only through the former’s effect on the scale of the marginal value of human capital,
∂xvn(a, x). That effect is itself mediated by the arrival rate of migration opportunities, λ.
Accordingly, I expect the misspecification error from ignoring this interaction to be small.
Second, the worker’s investment technology includes the vibrancy of her current city, so it
is κ̄

ζ σ
ζxβX1−β

n rather than simply κ̄
ζ σ

ζxβ .64 This difference would be wholly irrelevant if

there were a uniform vibrancy Xn ≡ X across locations, in which case the missing X1−β

would simply be subsumed in the estimate of κ̄, or if there was no sorting on skill across
locations, in which case matching worker panels pooled across locations would still yield
an unbiased estimate of β. The main concern is that workers with high levels of human
capital sort (albeit imperfectly) into more vibrant places, in which case existing estimates
of β would be biased upward. With that in mind, I verify that my main results are robust
to using lower values for β and η.

It remains to parameterize the initial human capital density for each city, φ
n
. Huggett,

Ventura, and Yaron (2006) demonstrate that a Ben-Porath model with a lognormal distri-
bution of initial human capital stocks provides a good fit of key patterns in the U.S. earnings
distribution. Accordingly, I set φ

n
to be a discretized lognormal density. I truncate the dis-

tribution at its fifth and ninety-fifth percentiles to ensure that its support lies within a finite
state space and has a strictly positive minimum. I set its coefficient of variation to 0.468
from Huggett, Ventura, and Yaron (2006, Table 5, Panel B, Column 4), which corresponds to
a neutral human capital model with elasticity β = 0.8 and accumulation starting at age 20.
To set the mean in each city, I turn to Heckman, Lochner, and Taber (1998, Table 2), who
estimate the initial level of human capital separately for high-school and college-educated
workers. They estimate an initial premium of up to 50% for college-educated workers. I use
the weighted average of these initial levels, weighting by the college share in a given city
from the 2011–15 acs five-year estimates, to set the mean for that city up to a choice of
scale, which will be estimated later.65 Finally, I set the total mass of entrants in each city
to match observed population shares of 15–19 year olds in the 2010 acs one-year sample.

Estimate {α, ζ, xscale, Tn, Bn, pn, κ̄} using a minimum distance estimator

The remaining parameters are estimated jointly to minimize the distance between the model
and the data regarding five sets of moments: (i) panel estimates of the returns from big
city experience from Duranton and Puga (2023, Table 2), (ii) total employment of wage and
salary workers in each city per the 2013 bea Regional Accounts, (iii) the total wage bill
in each city per the 2013 bea Regional Accounts, (iv) constant housing expenditure shares
across all cities, (v) a 2% annual growth rate.66 Although the parameters are estimated
jointly, their identification is rather intuitive.

The first three parameters, {α, ζ, xscale}, are primarily identified by the panel estimates
from Duranton and Puga (2023, Table 2). Duranton and Puga (2023) follow De la Roca

64The restriction that the elasticity on the vibrancy is 1−β rather than a generic β̃ is mostly immaterial:
one can simply toggle the value of ζ, the inverse elasticity of vibrancy with respect to city size, to affect the
strength of city characteristics in enhancing workers’ human capital investments.

65Previous estimates suggest that sorting on unobserved ability is negligible after controlling for education
(Baum-Snow and Pavan, 2012; De la Roca, Ottaviano, and Puga, 2023).

66In static spatial frameworks with a discrete number of agent types, it is common for there to be a one-to-
one mapping from the observed data on the endogenous variables of the model to the structural fundamentals
of the model. This mapping can then be inverted to identify the unique values of the estimated structural
fundamentals that exactly rationalize the observed data as an equilibrium (Redding and Rossi-Hansberg,
2017). Such is not the case here because the endogenous variables depend on the whole underlying spatial
distribution of human capital, which is unknown.
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and Puga (2017) in first estimating an individual earnings regression on a panel of workers
from the restricted-access nlsy Geocodes (1979–2012):

ln yjnt = an + aj + at +
∑

n
bne

j
nt + Cj

tb + εjnt,

where an is a city fixed effect, aj is a worker fixed effect, at is a time fixed effect, ejnt is the

experience acquired by worker j in city n up until time t, Cj
t is a vector of time-varying

individual and job characteristics, the scalar bi and the vector b are parameters, and εjnt is
an error term.67 They estimate that, controlling for worker and city characteristics, a year
of experience in a city of more than 5 million residents (based on 2010 Census counts) yields
1.14% higher earnings than would a year in a city with between 2 and 5 million residents.68

In my model, this corresponds to the moment condition

(
X5mil

X2mil

)1−β

=

L 1
ζ

5milx̄5mil,ζ

L
1
ζ

2milx̄2mil,ζ

1−β

= 1.0114,

where X5mil is the city size-weighted mean vibrancy among cities with more than 5 million
residents and X2mil is that among cities with between 2 and 5 million residents. Given a
value for β, we can think of this moment as primarily identifying the shape parameter of
vibrancy, ζ.

In the second step, Duranton and Puga (2023) regress the estimated city fixed effects
on city population to obtain a value for the static agglomeration elasticity, α̃:

ân = α̃ lnLn + εn.

Because the city fixed effect captures local fundamentals that may be correlated with city
size, they instrument for city size with a number of geographic characteristics and historical
population values.69 Their estimate is α̃ = 0.0452. In my model, estimating the city fixed
effect an alongside individual and time fixed effects gives it the structural interpretation an =
ln (TnL

α
n), which is the log “wage” for human capital in city n. Although the fundamental

productivity Tn may be correlated with city size Ln, instrumenting for city size as Duranton
and Puga (2023) do suffices to identify α. It follows that α can actually be identified outside
the minimum distance scheme as α = α̃ = 0.0452.

In the final step, Duranton and Puga (2023) re-estimate the second regression after
adding to the left-hand side the differential value of local experience in each city, valued at
the average local experience, ē:

ân + b̂nē = (α̃+ ς̃) lnLn + εn.

67Worker controls include firm tenure and its square along with indicators for two-digit sector and occu-
pation. To ensure enough observations per city, Duranton and Puga (2023) group cities by size. Above 2
million residents, each city is in a group by itself, as I have done. Below 2 million residents, their groups
are strictly finer than mine. Specifically, between 800,000 and 2 million, groups are incremented by 100,000.
Between 600,000 and 800,000, they are incremented by 50,000. Finally, between 75,000 and 600,000, they
are incremented by 25,000. See De la Roca, Ottaviano, and Puga (2023) for further description of the sample
restrictions.

68See Duranton and Puga (2023, Table 2, Column 3).
69Specifically, they use (i) the percentage of the area within 30-kilometers of the city center that has slopes

greater than 15% and the percentage covered by wetlands, (ii) the inverse hyperbolic sine of city population
in 1850 and 1920, (iii) the inverse hyperbolic sine of distance to the Eastern Seaboard, and (iv) the number
of heating degree days per year.
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This gives an estimate of the dynamic agglomeration elasticity, α̃+ ς̃. For average experience
ē = 8.4, they estimate α̃ + ς̃ = 0.0770, so ς̃ = 0.0318. We can use this estimate to identify
the scale of human capital, xscale, because the static component of the city size earnings
premium, ân, is independent of this scale but the dynamic component, b̂n, is not.

Identification of the remaining scale parameters goes roughly as follows. For a given
wage bill, variation in employment identifies local amenities, Bn, which are restricted to
have a mean of one. Similarly, for given employment, variation in the wage bill identifies
local exogenous productivity, Tn. For a given local productivity, Tn, I set the scale of local
urban costs, pn, such that the expenditure share on local accommodations is constant across
cities at 62% of potential income (Diamond, 2016).70 Finally, the scale of the returns to
time invested in human capital, κ̄, is identified through Equation (16). This parameter can
be separately identified from the scale of human capital, xscale, because Equation (16) is
invariant to this scale.

3.3 Quantitative predictions

The quantified model matches its aggregate targets exactly: city employment, city value
added from labor, and aggregate growth are all as in the data. In particular, city em-
ployment, which is my measure of city size, follows a Pareto distribution and approximates
Zipf’s law, as demonstrated in Figure 1. The New York metropolitan area is the largest with
more than 9 million workers in 2013, followed by Los Angeles with just under 6 million and
Chicago with roughly 4.5 million. The four groups of small cities have mean employment
of, roughly, 900,000; 600,000; 325,000; and 90,000, respectively.

Table 1 collects the parameter values that do not vary by location. The next section
will discuss the city fundamentals.

Table 1: Quantification Results

Param. Description Value Source

ε Migration elasticity 3 Diamond (2016)
λ(a) Mobility rates by age [0.076, 0.266] 2011–15 ACS Migration Flow files
ρ Discount rate 0.10
A Maximum age 40 Huggett, Ventura, and Yaron (2006)
β Investment elasticity of own skill 0.8 Huggett, Ventura, and Yaron (2006)
η Investment elasticity of time 0.7 Browning, Hansen, and Heckman (1999)
α Static agglomeration elasticity 0.045 Duranton and Puga (2023)
ζ Shape of vibrancy 6.228 MDE
xscale Scale of human capital 49.127 MDE
κ̄ Scale of investment technology 0.139 MDE

City fundamentals and vibrancies

Figures 2–5 show the city fundamentals and vibrancies implied by my quantitative proce-
dure. On each map, each marker refers to an msa in that location. The size of each marker
is proportional to total equilibrium employment in that city. The color of each marker varies

70In particular, pn = (0.62)TnL
α−θn
n . That expenditure on housing (and non-tradables more broadly)

varies little across cities is consistent with evidence from Davis and Ortalo-Magné (2011), Moretti (2013b),
and Diamond (2016). Along the baseline bgp, average time spent working exceeds 95%, so we lose little by
setting expenditure shares relative to potential income instead of actual income.
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Figure 1: Log rank plotted against log city employment in 2013 for the 34 city groups in the sample. For
groups with multiple cities, the rank shown is the median rank in the full distribution of its constituent
cities.

with whatever city value is being shown, with higher values always represented by darker
colors. Cities assigned to the same group are forced to be identical, so their markers will be
of the same size and color by definition. Next to each map, a scatterplot shows the values
for the thirty largest cities against their log size.

Figure 2 shows the local fundamental productivity, Tn, in each city. Unsurprisingly,
fundamental productivity is positively correlated with size, because productive places attract
workers. That said, cities like San Francisco, Washington, and Boston stand out relative
to their size. Variation in Tn captures variation in local institutions, infrastructure, and
capital stocks in general, but it is also how the model rationalizes pre-existing clusters like
Silicon Valley or Boston’s Kendall Square and Route 128.

Figure 3 shows the scale of urban costs, pnL
θn
n , in each city. Consistent with well-known

patterns in the data, big cities are more costly, accounting for both higher rents and higher
commuting costs.71 Some of the most fundamentally productive cities, like San Francisco,
are also the most expensive for two reasons. First, many of the most productive U.S. cities
are also the most restrictive for urban land use, which translates into a high congestion
elasticity, θn. Second, in order to match a constant budget share of urban costs across
cities, pn scales linearly with Tn in the quantitative procedure. This is a natural relationship,
though, insofar as urban costs partly capture the opportunity costs of commuting, which
vary with the average wage in the city.

Figure 4 shows the local amenity, Bn, in each city. Among the largest cities, warm-
weather sites like Los Angeles, Miami, and Dallas stand out as having high amenities.
Weather is clearly not the lone determinant, though: average amenities in smaller cities
are substantially lower than those in big cities, regardless of climate. This suggests that

71See, among others, Combes, Duranton, and Gobillon (2019) and the review by Duranton and Puga
(2020).
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Figure 2: The map in the left panel shows the local fundamental productivity, Tn, of each of the 378 cities
represented in the model. The scatterplot in the right panel shows, for the largest thirty cities, the level of
each city’s fundamental productivity against the natural log of its size.

Figure 3: The map in the left panel shows the local scale of urban costs, Pn = pnL
θn
n , of each of the 378

cities represented in the model. The scatterplot in the right panel shows, for the largest thirty cities, the
natural log of each city’s urban cost against the natural log of its size.
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something like consumption amenities—say, the quality or quantity of restaurants, enter-
tainment, community spaces, and so on, which are typically higher in bigger cities—are also
being captured by Bn. Consistent with this hypothesis, I find that, excepting San Francisco,
my measure of amenities is positively correlated with the total amenity value estimated by
Albouy (2016), who infers this value from U.S. data on wages, housing rents, and taxes
through the lens of a spatial equilibrium model.72 While Albouy (2016) infers that San
Francisco has the highest total amenity value among U.S. cities, though, my measure ranks
it poorly relative to other large cities. This is likely due to my method of inferring urban
costs, which enforces a constant expenditure share on local accommodations across all work-
ers and cities. To rationalize San Francisco’s relatively small size given its high fundamental
productivity, then, my procedure infers low amenities there.

Figure 4: The map in the left panel shows the local amenity, Bn, of each of the 378 cities represented
in the model. The scatterplot in the right panel shows, for the largest thirty cities, the level of each city’s
amenity against the natural log of its size.

Finally, Figure 5 shows the vibrancy, Xn = L
1
ζ
n x̄n,ζ , in each city. Given the parameter

values in Table 1, the variation in city size dominates that in skill composition, so vibrancy
is strongly positively correlated with city size. Nevertheless, differences in skill composition
are still important: mean human capital in New York exceeds that in Detroit, for example,
by nearly 9%. One city—Riverside, CA—sticks out as especially vibrant for its size. This is
so despite a relatively low mean initial level of human capital per its observed college share
and low fundamental productivity per its observed mean wage. As I explain in the next
section, Riverside’s high vibrancy is the result of a low opportunity cost of learning coupled
with migration frictions.

72For groups with multiple cities, I use the population-weighted mean of his total amenity value. Note
that Albouy (2016) defines cities based on the 1999 omb definitions of metropolitan statistical areas, so there
is some unavoidable mismatch between our results. Excepting San Francisco, the raw correlation between
our amenity values across my 34 city groups is 22%.
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Figure 5: The map in the left panel shows the local vibrancy, Xn = L
1
ζ
n x̄n,ζ , of each of the 378 cities

represented in the model. The scatterplot in the right panel shows, for the largest thirty cities, the natural
log of each city’s vibrancy against the natural log of its size.

Worker decision rules

In Figures 6–8, I turn to workers’ decision rules. Each figure comprises four panels, one for
each of four selected ages throughout the life cycle. Within each panel, I plot the relevant
function in each city across the range of relative human capital levels that lie within the
support of the stationary distribution. To limit visual clutter, I highlight two cities—New
York (blue) and Detroit (orange)—and show the rest in gray.

Figure 6 shows the optimal investment rate, σn(a, x). As demonstrated in Proposi-
tion 1, the optimal investment rate is non-increasing in both age and relative human capital
within a given city. This is consistent with the observed concentration at young ages of time
allocated to skill acquisition (Mincer, 1974, 1997). Across cities, however, the investment
rate varies ambiguously: larger cities generally feature a higher opportunity cost of invest-
ment because they afford higher flow utility per unit of human capital, BnTnL

α
n, but they

also feature higher returns to investment because they have higher vibrancy, Xn. Relative
to those in most cities, investment rates in New York are high, whereas those in Detroit
are middling. Investment rates are especially high in one particular city: Riverside. This
is because both its amenity, BRIV, and its fundamental productivity, TRIV, are quite low for
its size, but its vibrancy is, if anything, high for its size. As such, the model predicts that
workers in Riverside would invest relatively heavily in their human capital so long as they
are stuck in a low-amenity, low-productivity environment.

Figure 7 shows the optimal accumulation rate, hn(a, x) = κ̄
η [σn(a, x)]ηxβX1−β

n . Al-
though a worker’s optimal investment rate decreases with her relative human capital, her
optimal accumulation rate does not necessarily decrease because higher-skilled workers are
also better learners. Because η < β, her optimal accumulation rate is in fact increasing
with her relative human capital. Nevertheless, her accumulation declines with age as her
investment rate declines. Across cities, workers generally accumulate human capital more
quickly in more vibrant places, consistent with the moments I matched from Duranton and
Puga (2023, Table 2). Riverside again stands apart because of its especially high investment
rates for its size. Otherwise, cities are ranked roughly in order of their size, with New York

29



40 60 80 100
0

0.1

0.2

0.3
a = 5

40 60 80 100
0

0.1

0.2

0.3
a = 15

New York
Detroit

40 60 80 100
0

0.1

0.2

0.3
a = 25

40 60 80 100
0

0.1

0.2

0.3
a = 35

Figure 6: Each of the four panels plots the optimal time allocated to learning across relative productivity
levels for a different age, identified in the title. There are 34 lines in each panel, one for each city group,
with two cities highlighted: New York (blue) and Detroit (orange). All other cities are plotted in gray to
save on visual clutter.

at the top.
Figure 8 shows the optimal drift of relative human capital, dn(a, x) = hn(a, x) − γx.

Although a worker’s absolute level of human capital, z, does not depreciate, her relative
level, x, does depreciate as the economy grows at rate γ. Her relative level only increases on
net if her accumulation outpaces this shift in the distribution. The young typically invest
heavily enough in their human capital to gain relative to the trend, as evidenced by the
lines in the top two panels lying largely above the dashed line at zero. Such is not the case
for the old, who let their relative level depreciate even still five years before retirement, as
seen in the last panel. Regardless of age, accumulation relative to the trend is decreasing.
Putting all of this together, the lines in Figure 8 allow us to visualize the components of the
growth rate in Equation (16). For each relative level x within the support of the density φ,
the growth rate is the number γ that makes the average drift dn(a, x) across all ages and
cities—that is, across all panels and all lines within a panel—equal to zero.

Moreover, notice that at any age a in any city n, the value x̃a,n at which dn(a, x̃a,n)=0
is a sink : a worker will continue to accumulate on net up to x̃a,n, but past that level she
would let her relative human capital depreciate. This suggests that the detrended stationary
distribution has finite support, as we will confirm below. Contrast this result with other
idea-based growth models that require a distribution with a fat tail or an external source
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Figure 7: Each of the four panels plots the optimal accumulation of human capital, hn(a, x) =

κ[σn(a, x)]xβX1−β
n , across relative productivity levels for a different age, identified in the title. There

are 34 lines in each panel, one for each city group, with two cities highlighted: New York (blue) and Detroit
(orange). All other cities are plotted in gray to save on visual clutter.

to sustain growth.73 The key difference here is that human capital accumulation occurs
by producing potentially new knowledge, not simply by imitating others’ knowledge, so
steady-state growth can occur despite there being only finite knowledge in the economy at
any particular date.

Figure 9 shows the optimal annual flows from each origin to each destination, λ(a)Ln(a)µni(a, x),
at four select ages, a ∈ {5, 15, 25, 35}. Rows represent the origin of a flow, with origin city
groups ranked from top to bottom by the size of their constituent cities. Columns represent
the destination of a flow, with destination city groups ranked from left to right by the size
of their constituent cities. With any given year, workers are far more likely to stay in their
current city than move away, so I omit the flows along the diagonal from the color scale to
highlight the variation across destinations. Each panel has the same color scale, so looking
across panels (first left to right, then top to bottom) we observe from the darkening palette
that the young are more likely to migrate. This is due largely to the decline in frequency of
migration opportunities, λ(a), as workers age, but also in part to the decline in the value
function, vi(a, x), relative to the size of the bilateral migration frictions, τni, as workers age.
With any given panel, flows below the diagonal run from smaller to bigger cities. Young
workers (first panel) move on net to larger cities, with total flows below the diagonal exceed-
ing those above the diagonal, albeit only by 2%. A particularly strong channel runs from

73See, for example, Lucas and Moll (2014) and Perla and Tonetti (2014).
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Figure 8: Each of the four panels plots the optimal drift of human capital, dn(a, x) = κ[σn(a, x)]xβX1−β
n −

γx, across relative productivity levels for a different age, identified in the title. There are 34 lines in each
panel, one for each city group, with two cities highlighted: New York (blue) and Detroit (orange). All other
cities are plotted in gray to save on visual clutter.

Riverside to its larger neighbor, Los Angeles, but also to its smaller neighbor, San Diego,
both of which have better fundamentals than Riverside.
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Figure 9: Each of the four panels contains a heatmap of annual flows (in millions of workers) across all
bilateral pairs of the 34 city groups for a different age (in order left to right, then top to bottom: a = 5,
a = 15, a = 25, a = 35). Rows represent the origin of a flow; columns, the destination. Own flows are
omitted from the color scale because they would mask all other variation. Cities are ordered by size from
top to bottom and left to right. Migration rates are not cross-tabulated with relative productivity in this
figure.

City skill and age distributions

Each city’s human capital density inherits its initial shape and mass from its distribution
of entrants, φ

n
, which is lognormal with a city-specific mean and mass as described in

Section 3.2. In solving for the density as a cohort ages, however, recall that I proceed non-
parametrically, simply following the evolution implied by the Kolmogorov forward equation.
Nor do I target any moments of the distribution except the total mass of workers in each
city.

Nevertheless, the resulting distributions are quite reasonable. Figure 10 shows the
density of human capital within each city. Looking across panels, the density in each city
first shifts to the right as a cohort ages and accumulates human capital. Near the end of
the working life, the right tail recedes as workers let their relative human capital depreciate.
These patterns are consistent with the concavity of the cross-sectional earnings distribution
targeted in the human capital literature (Mincer, 1974).

Within any given panel, the relative placement of the lines indicates which cities are
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more or less skilled. At any age, for example, New York is not only larger than Detroit,
because the blue line lies above the orange one, but it is also more skilled, because relatively
more of its mass is in the upper range of the supported skill levels. Excluding Riverside,
which has an artificially high mean level of relative skill as we have discussed above, the
overall most skilled cities are, in order, New York, Los Angeles, Washington, Chicago,
Boston, and San Francisco. The least skilled are Sacramento, Cincinnati, Cleveland, Tampa,
and San Antonio.
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Figure 10: Each of the four panels plots the density φn(a, x) across relative productivity levels for a
different age, identified in the title. There are 34 lines in each panel, one for each city group, with two cities
highlighted: New York (blue) and Detroit (orange). All other cities are plotted in gray to save on visual
clutter.

Figure 11 shows the marginal age density in each city normalized by the city’s total
population share, φn(a) ≡ 1

`n

∫
φn(a, x) dx. Normalizing by population share allows us to

compare age demographics across cities on a common scale. A key distinction is between
cities for which the marginal age density slopes up and those for which it slopes down. In
an environment without migration frictions, an upward-sloping density here would imply
that a particular city is disproportionately preferred by the old; a downward-sloping one,
preferred by the young. But with migration frictions, the proper intuition is instead that the
places most preferred by the young are those with the steepest upward slopes at young ages.
These are the cities to which young people flock at their earliest migration opportunities.
The marginal density of New York, for instance, is upward-sloping. The seven steepest lines
up to a = 10 (that is, those starting below 0.02) are Charlotte, Washington, San Francisco,
Minneapolis, Seattle, Denver, and Boston. These cities are relatively productive and skilled
even controlling for size. Cities with the steepest declines up to a = 10, by contrast, are
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Figure 11: This figures plots the marginal density of age within each city, normalized by the city’s total
population share. There are 33 lines in the figure, one for each city group except Riverside, with two cities
highlighted: New York (blue) and Detroit (orange). All other cities are plotted in gray to save on visual
clutter. Riverside is omitted because it decreases convexly from 0.0458 to 0.0141, which means it would
have dominated the variation across the other lines if shown on the same scale.

Riverside, Sacramento, San Antonio, Los Angeles, and Detroit. Two of these five cities,
Sacramento and San Antonio, are among the five least-skilled cities in the economy, and
Detroit and Riverside have poor fundamentals relative to other cities of similar sizes. These
are the places that young people leave at their earliest opportunities. Places that are
desirable to the young are also generally desirable to the old, which is why nearly all of
the lines in Figure 11 are monotonic. Still, the slope for every city declines with age,
consistent with the declining mobility of workers as they approach retirement.

An example individual history

Following De la Roca and Puga (2017), a final helpful lens through which to view the
predictions of the model is to plot the evolution of earnings for workers in cities of different
size. Consider a worker born with mean initial human capital in Detroit that will receive
an opportunity shock immediately upon entry at age 20 (a = 0) and another after 10 years
of experience (a = 10).74 At each opportunity, she has a strictly positive probability of
moving to any city in the set N , but let us focus on two options: Detroit, with between 2
and 5 million residents, and New York, with more than 5 million. At her first opportunity,
the worker can either stay in Detroit or move to New York. At her second opportunity, if
she had previously moved to New York, she can remain there or return to Detroit; if she
had stayed in Detroit, let us suppose that she chooses to stay there again.

Accordingly, we consider three potential paths for this worker, plotted in Figure 12.
Along the first path, shown in solid orange, the worker is always in Detroit. Along the

74Of course, these shocks are unbeknownst to her, but with a continuum of agents we observers are assured
to find some worker with this realization of shocks.
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second, shown in solid blue, the worker immediately moves to New York and remains there.
In the third, shown in solid blue up to age 30 (a = 10) and thereafter in dashed orange, she
first moves to New York but later returns to Detroit. The left panel shows the evolution of
her earnings premium relative to always working in Detroit for each of the three potential
paths (hence why the solid orange line is at zero). The right panel shows the same for her
underlying level of human capital.
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Figure 12: This figure illustrates three possible sample paths of a worker born with mean initial human
capital in Detroit that receives opportunity shocks at ages 20 (a = 0) and 30 (a = 10). The left panel plots
her earnings premium relative to always staying in Detroit against her age; the right panel, her relative
productivity against her age. The solid orange line represents the path in which she chooses to stay in
Detroit at both opportunities. The solid blue line represents her path after age 20 if she chooses to move
to New York at her first opportunity and remain there. The dashed orange line represents her path after
age 30 if, after moving to New York at age 20, she chooses to return to Detroit at her second migration
opportunity.

For the version of the worker in New York, her profile of relative earnings has an inter-
cept and a slope component. The intercept captures the percentage difference in earnings
between the version of her working in New York and that of her working in Detroit. This is
calculated as the percentage difference between her “wage” in New York, LαNY, and that in
Detroit, LαDET, after controlling for the fundamental productivity in each location, since we
are interested in the portion of the earnings premium that varies with city size. The slope
component captures the rising gap in earnings between these versions of herself as they each
accumulate experience in a different city. This is calculated by tracing out her accumulation
in New York, hNY(a, x), and that in Detroit, hDET(a, x). Figure 12 shows that a worker in
New York initially earns 6% more than a worker in Detroit, controlling for differences in
fundamental productivity, and this gap nearly doubles, so that after 10 years the difference
in earnings reaches almost 11%.

The dashed lines in Figure 12 illustrate the portability of the learning advantages of
bigger cities. Up until year 10, the relative earnings profile of the version of our worker
who begins in New York and then relocates is the same as that of the version who always
works in New York as captured by the solid blue line discussed above. At that point, she
relocates to Detroit, and her relative earnings drop as a result of the Detroit wage replacing
the New York wage. Nevertheless, the worker is able to retain roughly 5% higher earnings
after relocating to Detroit as a result of the more valuable experience she accumulated over
10 years in New York.

The right panel of Figure 12 demonstrates why this occurs. The same worker accumu-
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lates human capital at a faster rate in New York than she would in Detroit, so the version
of herself that moves to New York has, after 10 years of experience, accumulated roughly
5% more human capital than the version of herself that stayed in Detroit. The final version
of herself that moves back to Detroit after 10 years will therefore have a permanently higher
level of human capital than the version that had always stayed in Detroit.

4 Policy exercise

As an application of the model, I now consider a commonly-proposed place-based policy:
relaxing land use regulations in the “brain hubs” of New York and San Francisco. This
exercise is subject to an important caveat: the effect of the policy is stated as a comparison
across balanced growth paths without regard for the speed or cost of transition to the new
path. In the presence of migration frictions, the transition would be interesting to study,
but computing it falls outside the methods developed in this paper.

4.1 Relaxing land use regulations in the Brain Hubs

Recall that the congestion elasticity, θn, is set to match estimates from Saiz (2010) of the
inverse housing supply elasticity in each city. This elasticity has two main determinants:
land availability and land use regulations as measured by the Wharton Residential Land Use
Regulatory Index (wri).75 According to the wri, land use restrictions in New York and San
Francisco are among the tightest in the country. The elasticity of housing supply due to land
use regulations in New York is at the ninety-sixth percentile of the nationwide distribution
of the housing supply elasticity; that in San Francisco, the ninety-ninth percentile.

In this policy exercise, I focus on a change in the congestion elasticity, θn, holding
fixed the scale of urban costs, pn, in both New York and San Francisco. Specifically, I
set land use regulations in both cities equal to the level observed in the median US city.
I then recompute the congestion elasticity in each city, holding fixed the amount of land
available.76 With relaxed land use regulations, both cities can accommodate more workers
at the same level of urban costs.

Figures 13–15 show how city sizes, costs, and vibrancies change. Unsurprisingly, New
York and San Francisco grow in size, with New York expanding by 16.9% and San Francisco
by 4.9% as shown in Figure 13. All other cities shrink, but all do so by less than 3%. Most of
the reallocation is away from large cities in the middle of the country, like Atlanta, Kansas
City, and Dallas, or from cities close to New York, like Philadelphia.

One consequence of this spatial reallocation is that urban costs fall everywhere, as
shown in Figure 14. The inflows to New York and San Francisco, though large, are small
enough so as not to offset the direct reduction in costs from the policy. Meanwhile, all other
cities experience reduced congestion as they shrink.

Another consequence is that the brain hubs become more vibrant, as shown in Fig-
ure 15. New York becomes 13.4% more vibrant; San Francisco, 2.9% more vibrant. Unlike
with size, though, which decreases for all other cities in response to the policy, the vibrancy
of some other large cities also increases. Philadelphia, Miami, and Boston each become
at least 1% more vibrant. Additional gains cluster along the East Coast (Washington and

75The wri is based on detailed surveys of municipalities in 2007. It is designed to have a zero mean and
unit standard deviation. See Gyourko, Saiz, and Summers (2008) for further details.

76Hsieh and Moretti (2019) and Martellini (2022) consider similar counterfactuals in static or stationary
settings.
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Figure 13: The left panel maps each city’s percentage change in population relative to the competitive
allocation. The right panel plots that percentage change against the natural log of each city’s population in
the competitive allocation.

Figure 14: The left panel maps each city’s percentage change in total urban cost relative to the competitive
allocation. The right panel plots that percentage change against the natural log of each city’s urban cost in
the competitive allocation.

Baltimore), in Southern California (Los Angeles, Riverside, and San Diego), and in Central
Florida (Tampa and Orlando). For these cities to shrink and yet become more vibrant, it
must be that they are either attracting or producing more human capital. The same must
be true even for the brain hubs: holding the skill distribution fixed within each city, one
would expect a 1% increase in size to yield only a 1

ζ% increase in vibrancy.
We can confirm this by examining the underlying skill distributions in different cities.

Figure 16 shows the skill distribution in three cities: New York, San Francisco, and Detroit.
The solid lines show the three distributions along the baseline bgp. The dashed lines
show the three distributions along the counterfactual bgp. As a result of the policy, we
see a pronounced rightward shift in New York’s distribution, especially at older ages. A
much less pronounced rightward shift also occurs in San Francisco. Detroit, which was not
targeted by the policy, sees essentially no change in its skill distribution. Changes in other
untargeted cities range from the imperceptible to the slightly noticeable in Philadelphia,
which experienced the largest deviation between its change in size (-2.42%) and change in
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Figure 15: The left panel maps each city’s percentage change in vibrancy relative to the competitive
allocation. The right panel plots that percentage change against the natural log of each city’s vibrancy in
the competitive allocation.

vibrancy (+1.42%) of all untargeted cities.
The large shift in New York compared to the minimal shifts in untargeted cities suggests

that the response to the policy is not primarily through skill-biased migration. A cheaper
New York is not simply syphoning off high-skilled workers from other cities. Instead, workers
in New York must be accumulating human capital at a faster rate. We see this in Figure 17,
which shows the optimal accumulation, hn(a, x), in the same three cities as before. The
dashed blue line lies well above the solid blue line, which means workers in New York earn
much higher returns on their human capital investments after the policy. The same goes for
workers in San Francisco, but to a lesser extent.

Despite the noticeable effects in New York, ultimately I find that relaxing land use
regulations in the brain hubs increases the aggregate growth rate only by 13 basis points
to γBH = 2.13%. A few factors mitigate the aggregate effect. First, the policy only induces
moderate employment reallocation. New York and San Francisco become cheaper and so
attract more workers, but in general equilibrium this makes all other cities cheaper, too,
as they shrink, thereby attenuating the pull of the brain hubs. Second, although human
capital accumulation speeds up in the brain hubs, the diffusion of this new knowledge is
slowed by migration frictions. Freer mobility would likely lead to larger gains. Nevertheless,
this exercise demonstrates that simply relaxing land use regulations in two cities could have
a permanent, positive effect on aggregate growth.
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Figure 16: Each of the four panels plots the density φn(a, x) across relative productivity levels for a
different age, identified in the title. There are 6 lines in each panel, two each for New York, San Francisco,
and Detroit. Solid lines denote distributions on the baseline bgp. Dashed lines denote distributions on the
counterfactual bgp.
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5 Conclusion

In this paper, I develop a quantitative spatial endogenous growth model in which hetero-
geneous workers make forward-looking migration decisions and human capital investments
over the life cycle. Local externalities in human capital investment drive both agglomera-
tion and growth. I show that the growth rate depends on the spatial distribution of human
capital, making it sensitive to spatial policies.

I quantify the model such that it jointly rationalizes a host of empirical facts about
American cities in the cross-section and American workers over the life cycle. City sizes
approximately follow Zipf’s law, and bigger cities are generally more productive, more ex-
pensive, and more skilled. Consistent with recent panel estimates, workers learn more in big
cities, and the young migrate disproportionately to bigger and more-skilled cities because of
this. All the while, the economy as a whole follows a balanced growth path with 2% annual
growth.

Using the quantified model, I evaluate a commonly-proposed place-based policy: re-
laxing land use restrictions in the “brain hubs” of New York and San Francisco. I find that,
along the new balanced growth path, both cities are larger and more skilled, with New York
especially so. This is not primarily the result skill-biased migration, as if the brain hubs
simply syphoned off skilled workers from other cities. Instead, the rate of human capital
accumulation in both cities increases, meaning that the spatial policy helps produce more
skilled workers. Ultimately, I find that the aggregate growth rate for the entire economy
increases by 13 basis points in response to the policy.

I expect my framework to serve as a basis for future work. My framework is well-suited
to evaluate the long-run effects of policies that shift workers around the urban system, like
the $11 billion regional technology hub program funded through the American Rescue Plan
and the CHIPS and Science Act, which aims to create “regional growth clusters” outside of
the existing coastal hubs (EDA, 2021; CHIPS, 2022).77 It could also be used to estimate the
long-run effects of remote work, to reexamine the Great Divergence (Moretti, 2013a), or to
trace out the effects of place-based policies for macro-development (Duranton and Venables,
2021).

It would be particularly useful to extend my framework along several margins. First,
I abstracted from the consumption-savings problem because Ben-Porath workers maximize
the present value of earnings in the absence of a labor-leisure decision and liquidity con-
straints. When workers face liquidity constraints, though, Bilal and Rossi-Hansberg (2021)
have argued that workers may treat their location as an asset by moving to cheaper places
with lower future returns as a form of borrowing. Including a consumption-savings prob-
lem with liquidity constraints alongside the migration and investment problems would allow
for this effect. Second, I defined vibrancy as a single index of knowledge at the city level
to which resident workers have continuous access, but one may consider how occupational
propinquity or urban form affect the strength of knowledge spillovers or the frequency of
face-to-face interactions (Atkin, Chen, and Popov, 2022). Finally, I restricted my solutions
to balanced growth paths, but it would be useful to solve for the transition between bal-
anced growth paths in order to compute the speed and welfare effects of the transition in
the presence of migration frictions.

77Atkinson, Muro, and Whiton (2019) and Gruber and Johnson (2019) advocate for this type of policy in
response to recent trends in the concentration of U.S. innovation-sector jobs.
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Artuç, Erhan, Shubham Chaudhuri, and John McLaren. 2010. “Trade shocks and labor
adjustment: A structural empirical approach.” American Economic Review 100 (3):1008–
45.

Atkin, David, Keith Chen, and Anton Popov. 2022. “The returns to face-to-face interactions:
Knowledge spillovers in Silicon Valley.” National Bureau of Economic Research, Working
Paper 30147.

Atkinson, Robert D., Mark Muro, and Jacob Whiton. 2019. “The case for growth centers:
How to spread tech innovation across America.” Brookings Institution, Research report.

Balboni, Clare. 2019. “In harm’s way? Infrastructure investments and the persistence of
coastal cities.”

Baum-Snow, Nathaniel and Ronni Pavan. 2012. “Understanding the city size wage gap.”
Review of Economic Studies 79 (1):88–127.

Behrens, Kristian, Gilles Duranton, and Frédéric Robert-Nicoud. 2013. “Household sorting
in the city.”

Behrens, Kristian and Frédéric Robert-Nicoud. 2015. “Agglomeration theory with heteroge-
neous agents.” In Handbook of Regional and Urban Economics, vol. 5A, edited by Gilles
Duranton, John Vernon Henderson, and William C. Strange, chap. 4. Elsevier, 171–245.

Ben-Porath, Yoram. 1967. “The production of human capital and the life cycle of earnings.”
Journal of Political Economy 75 (4):352–365.

43



Berliant, Marcus and Masahisa Fujita. 2008. “Knowledge creation as a square dance on the
Hilbert cube.” International Economic Review 49 (4):1251–1295.

Berliant, Marcus, Robert R. Reed, and Ping Wang. 2006. “Knowledge exchange, matching,
and agglomeration.” Journal of Urban Economics 60 (1):69–95.

Berry, Christopher R. and Edward L. Glaeser. 2005. “The divergence of human capital
levels across cities.” Papers in Regional Science 84 (3):407–444.

Bilal, Adrien. 2023. “The geography of unemployment.” Quarterly Journal of Economics
138 (3):1507–1576.

Bilal, Adrien and Esteban Rossi-Hansberg. 2021. “Location as an asset.” Econometrica
89 (5):2459–2495.

Black, Duncan and Vernon Henderson. 1999. “A theory of urban growth.” Journal of
Political Economy 107 (2):252–284.

Breinlich, Holger, Gianmarco I. P. Ottaviano, and Jonathan R. W. Temple. 2014. “Regional
growth and regional decline.” In Handbook of Economic Growth, vol. 2, edited by Philippe
Aghion and Steven N. Durlauf, chap. 4. Elsevier, 683–779.

Browning, Martin, Lars Peter Hansen, and James J. Heckman. 1999. “Micro data and
general equilibrium models.” In Handbook of Macroeconomics, vol. 1, chap. 8. Elsevier,
543–633.

Bryan, Gharad and Melanie Morten. 2019. “The aggregate productivity effects of internal
migration: Evidence from Indonesia.” Journal of Political Economy 127 (5):2229–2268.

Buera, Francisco J. and Ezra Oberfield. 2020. “The global diffusion of ideas.” Econometrica
88 (1):83–114.

Cai, Sheng, Lorenzo Caliendo, Fernando Parro, and Wei Xiang. 2023. “Mechanics of spatial
growth.” National Bureau of Economic Research, Working Paper 30579.

Caicedo, Santiago, Robert E. Lucas, Jr, and Esteban Rossi-Hansberg. 2019. “Learning, ca-
reer paths, and the distribution of wages.” American Economic Journal: Macroeconomics
11 (1):49–88.

Caliendo, Lorenzo, Maximiliano Dvorkin, and Fernando Parro. 2019. “Trade and labor
market dynamics: General equilibrium analysis of the China trade shock.” Econometrica
87 (3):741–835.

Carlsen, Fredrik, Jørn Rattsø, and Hildegunn E. Stokke. 2016. “Education, experience, and
urban wage premium.” Regional Science and Urban Economics 60 (1):39–49.

Combes, Pierre-Philippe, Gilles Duranton, and Laurent Gobillon. 2019. “The costs of
agglomeration: House and land prices in French cities.” Review of Economic Studies
86 (4):1556–1589.

Costa, D. L. and M. E. Kahn. 2000. “Power couples: Changes in the locational choice of
the college educated, 1940-1990.” Quarterly Journal of Economics 115 (4):1287–1315.

44



Davis, Donald R. and Jonathan I. Dingel. 2019. “A spatial knowledge economy.” American
Economic Review 109 (1):153–170.

Davis, Morris A., Jonas D. M. Fisher, and Toni M. Whited. 2014. “Macroeconomic impli-
cations of agglomeration.” Econometrica 82 (2):731–764.
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A.1 City structure and urban cost

This appendix provides microfoundations for my specification of urban costs. I build on
Behrens, Duranton, and Robert-Nicoud (2013) and Duranton and Puga (2015), who extend
the canonical monocentric city model to environments with heterogeneous workers. Relative
to the canonical model, there are two main differences: (i) utility will not equalize across
all workers, only across those of the same type; (ii) different groups will have different
willingness to pay for the same location, so the overall bid-rent curve will be formed by the
upper envelope of the type-specific bid-rent curves.

In each city, production takes place at a single point called the central business district
(cbd). On either side of the cbd there is a line comprised of identical residences of unit
length. Workers commute from their residence to the cbd at a cost. The cost is in units of
time, so commuting is more expensive for highly-productive workers. In particular, I assume
that commuting from a residence at distance ` from the cbd requires ϑn`

θn units of time,
so the commuting cost for a worker with productivity z residing at distance ` is (ϑnTn)z`θn .
The rent at distance ` in city n at date t is denoted rn(`, t).

Each worker chooses her residence by trading off commuting costs and land rents. She
is allowed to move freely within the city at every date, so her choice of residence is static and
separable from her dynamic decision problem specified in the main text.78 Her objective is
to minimize her total urban cost at each date, which yields the Alonso-Muth condition

θnϑnTnz`
θn−1 = −∂`rn(`, t). (A.1)

A residential equilibrium at date t consists of a rent gradient rn(`, t) and an assignment
function Ln(z, t) such that the Alonso-Muth condition (A.1) holds for all (z, `) and all
workers are allocated to a residence.

The Alonso-Muth condition implies that rents fall with distance and that willingness
to pay for a residence at a given distance is increasing in human capital. It follows from the

78The only concern would be if the worker’s time allocation is forced to a corner. This never occurs in
the quantified model.
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second fact that workers will sort perfectly such that more productive workers will be closer
to the cbd. With a slight abuse of notation, let Gn(z, t) denote the marginal distribution
of human capital in city n at date t and gn(z, t) its density.79 The supply of residential
land between ` and `+ d` is simply 2d`. For a proposed assignment function L with inverse
L−1, there is a density gn(L−1(`), t) of residents with human capital between L−1(`) and

L−1(`)− dL−1(`)
d` d`. Equating supply and demand yields the relationship

−gn(L−1(`), t)
dL−1(`)

d`
d` = 2d`,

which, by the inverse function theorem, simplifies to

−dL(z)

dz
=

1

2
gn(z, t).

Noting that the city edge will be at distance 1
2Ln(t), one can integrate this expression over

z to get the equilibrium assignment function

Ln(z, t) =
Ln(t)

2
[1−Gn(z, t)]. (A.2)

So workers are spread across the linear city according to their productivity quantiles, with
the most productive closest to the cbd.

To solve for the equilibrium bid-rent curve, I integrate the Alonso-Muth condition (A.1)
over the line using the assignment function (A.2) to substitute for z. I normalize rent at
the city edge to zero, so

rn(`, t) = θnϑnTn

∫ Ln(t)/2

`

G−1
n

(
1− 2l

Ln(t)
, t

)
lθn−1 dl. (A.3)

In general, the equilibrium bid-rent curve inherits the lack of a closed-form solution from the
human capital distribution. Nevertheless, one can identify an important trait of the total
urban cost (ϑnTn)z`θn + rn(`, t), namely that it can be detrended by the same rate γ as
the rest of the model. This is because workers are assigned to distances in accordance with
their productivity quantiles, all of which grow at the same constant rate γ by definition of
the bgp. One could substitute this specification of the urban cost into the main text and
go on to solve for the bgp without hitting any theoretical obstructions.

I do not proceed along this route for a computational reason: it is much faster and eas-
ier to iterate over a small set of location characteristics than a large one. In the main text,
workers need only consider the vibrancy and population of each city, which has dimension
2N . Under the specification above, however, they would need to consider all vibrancies and
rent gradients. The latter are continuous functions over the space of detrended productiv-
ities; their set, when discretized with Mx points, consists of NMx values. Since sorting by
skill within the city is not a focus of this paper, I want to avoid this computational burden.

Accordingly, I further suppose that within each city there is a local government who
collects land rents and redistributes them to current residents. Note that the local govern-
ment can target residents by their productivity without distorting their choice of distance
from the cbd. The only constraint on the local government is that it cannot run a deficit;

79That is, gn(z, t) = (L/Ln(t))
∫A
0 gn(a, z, t) da and Gn(z, t) =

∫ z gn(ζ, t) dζ.
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for simplicity, surpluses are simply burned.80 In order to generate the urban cost specified
in the main text, the government of city n must impose the reimbursement schedule

%n(z, t) = rn(Ln(z, t), t)− (ϑnTn)z

[(
Ln(t)

2

)θn
− Ln(z, t)θn

]
(A.4)

This reimbursement schedule is feasible: the local government just hands back each worker’s
land rent minus a non-negative amount. All workers are weakly worse off than they would
be without the transfers, and more so for higher-skilled ones, but this is of no consequence
for the questions of this paper.81

A.2 Derivation of the Hamilton-Jacobi-Bellman equation

I start by fully specifying the sequence of idiosyncratic preference shocks and (utility-
denominated) migration costs that accrue to a worker given her particular location history.
I then recast the worker’s sequence problem in recursive form. Along the way, I establish the
main lemma: the worker’s value function is homogeneous of degree one in the product of all
her past shocks and costs, making them irrelevant for current decisions. This result allows
us to obtain the Hamilton-Jacobi-Bellman equation (5) in the main text and other isomor-
phic representations akin to what is often seen in the discrete-time literature on optimal
migration. I conclude this section by deriving the optimal investment rule.

A.2.1 Specification of a worker’s location history

The location history of an individual ω at date t is a set

Hω(t) = {nω0 , Iω(t),Hω
b (t),Hω

n(t)}

with the following elements:

• her birth location nω0 ;

• her count of migration opportunities Iω(t) ∈ N, which evolves as a Poisson process
with arrival rate λ;

• an Iω(t) × N matrix Hω
b (t) recording her idiosyncratic preference draws, which are

drawn i.i.d. from the Fréchet distribution;

• an Iω(t) × N binary Markov matrix Hω
n(t) recording her location choices, which are

optimal controls that take into account her idiosyncratic preference draws.

Let N be the column vector of location labels [1, 2, . . . , N ]. The set of locations that indi-
vidual ω has chosen through date t is the set of elements in the vector nω(t) ≡ Hω

n(t)N,
which we denote by nωι for ι = 1, 2, . . . , Iω(t). For any date t′ < t, her location at t′ is
encoded as

nω(t′) =

{
eω(t′, t)′nω(t) if Iω(t) > 0

nω0 else

80Alternatively, one could suppose that they are surrendered to a national pool and redistributed equally
to all workers as a lump sum so that they do not distort any choices.

81A helpful analogy is to consider how we often introduce subsidies into New Keynesian models to correct
for inefficient production when dealing with the inefficiency would only be a nuisance for the question at
hand.
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where eω(t′, t) is the elementary column vector of length Iω(t) with a one in entry Iω(t′).
The function nω(t) is continuous from the right. The law of motion for an individual’s
location is therefore

dnω(t) = [nω(t)− nω(t−)] dIω(t).

where nω(t−) is the limit of nω(t) from the left.
Her flow utility at date t is the product of her current local amenity, her consumption,

and her history of permanent preference shifters and migration costs. Define

b̂ω(t) ≡ Hω
n(t)′Hω

b (t)

τ̂ω(t) ≡ Hω
n−(t)′Hω

n(t)T

where Hω
n−(t) is the origin matrix, which is just the one-step lag of the choice matrix Hω

n(t),

Hω
n−(t) ≡


e′nω0
0′N
...

0′N


Iω(t)

+


0 . . . . . . . . . 0
1 0 . . . . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

Hω
n(t),

and T ≡ [τnm]N×N is the matrix of bilateral migration costs. Both b̂ω(t) and τ̂ω(t) are col-

umn vectors of length Iω(t) with typical elements b̂ωι = bωnωι and τ̂ωι = τnωι−1,n
ω
ι

, respectively.
With this notation, flow utility can be written as

Un[c;Hω] =

Iω(t)∏
ι=1

b̂ωι
τ̂ωι

un(c)

where un(c) = Bnc is the amenity-adjusted flow of the consumption good.

A.2.2 Recasting the sequence problem in recursive form

Under the assumption that location-specific preference shocks are permanent in the partic-
ular sense defined in the previous section, the value function of an individual ω of age a
with human capital z and history H in location n at date t is

Ṽn(a, z, t;H) = max
s

E


t+A−a∫
t

e−ρr

Iω(r)∏
ι=1

b̂ωι
τ̂ωι

Bncn(s, z, r) dr

∣∣∣∣∣∣∣∣
a(t) = a
z(t) = z
n(t) = n
H(t) = H

 (A.5)

subject to the budget constraint

cn(s, z, r) =
[
TnLn(r)α(1−s)− pnLn(r)θn

]
z

and the laws of motion

da = dr

dz =
[
κ(s)zβZ1−β

n

]
dr
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and those for n(r) and H(r) specified in the previous section. The general form of the
corresponding Hamilton-Jacobi-Bellman equation (hjb) is

ρṼn(a, z, t;H) = max
s


Iω(t)∏

ι=1

b̂ωι
τ̂ωι

un(s, z, t) +
1

dt
E dVn(t)[a(t), z(t), t;H(t)]


subject to the same constraints. Following Sennewald and Wälde (2006, §2.4), we can
rewrite the hjb in three steps.

1. Use a change of variables to write

dṼn(a, z, t;H) = {∂tṼn(a, z, t;H) + ∂aṼn(a, z, t;H)[ȧ] + ∂zṼn(a, z, t;H)[ż]} dt
+ [Ṽn+

(a, z, t;H+)− Ṽn(a, z, t;H)] dI(t),

where H+ is the limit of the worker’s history from the right, incorporating the optimal
location choice at the next migration opportunity, n+.

2. Using E dI(t) = λ dt and that ȧ = 1,

E dṼn(a, z, t) = {∂tṼn(a, z, t;H) + ∂aṼn(a, z, t;H) + ∂zṼn(a, z, t;H)[ż]} dt
+ λ[Ṽn+

(a, z, t;H+)− Ṽn(a, z, t;H)] dt.

3. Divide by dt.

The resulting hjb is

ρṼn(a, z, t;H) = max
s

{Iω(t)∏
ι=1

b̂ωι
τ̂ωι

un(s, z, t)

+ ∂zṼn(a, z, t;H)
[
κ(s)zβZ1−β

n

]}
+ ∂tṼn(a, z, t;H) + ∂aṼn(a, z, t;H)

+ λ
[
Ṽn+

(a, z, t;H+)− Ṽn(a, z, t;H)
]
,

(A.6)

and we have the following lemma by construction.

Lemma 2. The value function Ṽn(a, z, t;H) specified in (A.5) is homogeneous of degree one
in the agent’s location history up to time t from the left.

Lemma 2 states that the scale of the value function can be renormalized after each
migration opportunity without affecting future decisions, even though those decisions are
forward-looking. The key is that once a particular preference shock is realized and its
associated city is chosen, b̂ωι , it multiplies all future utility flows, regardless of subsequent
investments or migration decisions. The same goes for migration frictions, τ̂ωι .82 Since

82Because flow utility is a linear function of skill, migration frictions act like a particular form of skill de-
preciation in which labor productivity is reduced but investment productivity is not. Likewise, idiosyncratic
preference shocks can be reinterpreted as a particular kind of place-specific productivity shocks. See Bryan
and Morten (2019) for a model of location choice developed under this interpretation.
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the scale of utility is irrelevant for decisions, we can arbitrarily renormalize the scale of a
worker’s history up to the present moment, which we will do from now on when we write the
worker’s problem.83 Bilal (2023, §IV.A.3–4), whose model is likewise in continuous time,
uses a similar specification for preference shocks, but he ignores bilateral migration costs.
Desmet, Nagy, and Rossi-Hansberg (2018) also use a similar specification in discrete time,
but they require the additional assumption that bilateral migration costs are, in a particular
sense, decomposable and reversible so that the migration decision problem reduces to a static
one.84

The final maneuver is to take expectations with respect to the Fréchet taste shock from
the contemporaneous migration opportunity. Letting Vn(a, z, t) denote the value function
that incorporates said expectation, we have,

ρVn(a, z, t) = max
s

{
un(s, z, t) + ∂zVn(a, z, t)

[
κ(s)zβZ1−β

n

]}
+ ∂tVn(a, z, t) + ∂aVn(a, z, t)

+ λ

{
Ebω

[
max
i

bωi
τni

Vi(a, z, t)

]
− Vn(a, z, t)

}
.

With the usual algebra, we find that

Ebω
[
max
i
bωi
Vi(a, z, t)

τni

]
=

(∑
i

τ−εni Vi(a, z, t)
ε

)1/ε

,

and that the optimal migration shares are

mni(a, z, t) ≡ P
{

arg max
k

bωk
Vk(a, z, t)

τnk
= i

}
=

τ−εni Vi(a, z, t)
ε∑

k τ
−ε
nk Vk(a, z, t)ε

.

It follows that

Ebω
[
max
i
bωi
Vi(a, z, t)

τni

]
= mni(a, z, t)

− 1
ε
Vi(a, z, t)

τni
, any i. (A.7)

We emphasize that the right-hand side holds for any city i. This makes sense because the
hjb is agnostic about which specific location attains the maximum.

Equation (A.7) yields two particularly useful specifications. The first is analogous to
what is used in Caliendo, Dvorkin, and Parro (2019) and related models:85

Ebω
[
max
i
bωi
Vi(a, z, t)

τni

]
= mnn(a, z, t)−

1
ε Vn(a, z, t).

83By the same logic, we can further introduce a permanent preference reduction at each migration oppor-
tunity to keep the mean equal to one.

84Specifically, they assume that mni = mout
n min

i for all n, i and mnn = 1 for all n, which together imply
mout
n = 1/min

n . That is, the cost of migrating into a location is always fully recouped upon migrating out
of it, so there is no sense in which one location provides greater “migration access” than another.

85See also, for example, Artuç, Chaudhuri, and McLaren (2010) and Balboni (2019). Notice that each of
these papers directly specifies type-1 extreme value preference shocks and migration costs as additive with
the worker’s value function (or its log). The resulting migration decision problem, conditional on having the
opportunity to move, is then isomorphic to the one presented here. Balanced growth requires a specification
that is multiplicative in levels (as I specify here) or additive in logs (as in, e.g., Monras, 2020).
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With this specification, only the current location appears in the hjb; in fact, the entire
migration block can be brought over to the left-hand side, appearing analogously to an
adjustment of the discount rate. While simple, this specification appears to divorce the
hjb, for which the identity of the location choice is inconsequential, from the Kolmogorov
forward equation, for which it is crucial to track cross-city flows. Accordingly, I prefer a
second specification:

Ebω
[
max
i
bωi
Vi(a, z, t)

τni

]
=
∑
i

mni(a, z, t)
ε−1
ε
Vi(a, z, t)

τni
.

The hjb can then be written as

ρVn(a, z, t) = max
s

{
un(s, z, t) + ∂zVn(a, z, t)

[
κ(s)zβZ1−β

n

]}
+ ∂tVn(a, z, t) + ∂aVn(a, z, t)

+ λ
∑
i

mni(a, z, t)

[
mni(a, z, t)

− 1
ε

τni
Vi(a, z, t)− Vn(a, z, t)

]
where we are free to bring Vn(a, z, t) inside the brackets of the last line because

∑
imni(a, z, t) =

1 for all (n, a, z, t). The hjb, stated this way, has an alternative interpretation as the value
function of a representative agent in state (n, a, z, t) who maximizes with the set of continu-
ous control variables {sn(a, z, t),mn·(a, z, t)} subject to the constraint

∑
imni(a, z, t) = 1.86

Lemma 3. A representative agent with state (n, a, z, t) maximizes the value function

ρVn(a, z, t) = max
s,m

{
un(s, z, t) + ∂zVn(a, z, t)

[
κ(s)zβZ1−β

n

]}
+ ∂tVn(a, z, t) + ∂aVn(a, z, t)

+ λ
∑
i

mni

[
m
− 1
ε

ni

τni
Vi(a, z, t)− Vn(a, z, t)

]
subject to the constraint

∑
imni = 1 for all n.

Proof. Take first order conditions with respect to mni for all i:

0 = λ

(
ε− 1

ε

)
m
− 1
ε

ni

Vi
τni
− Λ, ∀n, i

0 = 1−
∑
i

mni, ∀n

where Λ is the Lagrange multiplier on the constraint. It follows that

mni = K

(
Vi
τni

)ε
, ∀n, i.

for some constant K. The constraint
∑
imni = 1 then implies that

mni =
τ−εni Vi∑
k τ
−ε
nk Vk

, ∀n, i.

just as in Equation (7).
86See Rudik et al. (2022, Prop. 1) and Donald, Fukui, and Miyauchi (2023a, Lemma 1) for related results.
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A.2.3 Optimal investment rule

Consider the maximization over a worker’s raw labor allocated to investment, s, in the hjb
equation (5). With k(s) ≡ κ̄

η s
η, the first-order condition with respect to s is

0 = −BnTnLn(t)αz + ∂zVn(a, z, t)κ̄sη−1zβZn(t)1−β .

Solving for s yields the rule

sn(a, z, t) =

(
κ̄ ∂zVn(a, z, t)

BnTnLn(t)α

(
Zn(t)

z

)1−β
) 1

1−η

. (A.8)

The corresponding optimal drift of the worker’s human capital is then

hn(a, z, t) = κ[sn(a, z, t)]zβZn(t)1−β . (A.9)

A.3 Derivation of the Kolmogorov forward equation87

The Hamilton-Jacobi-Bellman equation derived above encodes a controlled stochastic pro-
cess for the state of an individual agent. The coupled Kolmogorov forward equation answers
the following question: given this controlled stochastic process for each agent and some ini-
tial distribution of agents gn(a, z, 0), what is the density function gn(a, z, t) over the state
space at each point in time t > 0?

Following Kredler (2018), we will derive the Kolmogorov forward equation by first
considering the discrete-time evolution of a moment of an arbitrary test function. Fix a
continuously differentiable function f that vanishes on the boundaries of the state space.
Consider the moment

Mf (t) =
∑
n

∫∫
fn(a, z)gn(a, z, t) da dz.

If we want to approximate the change in Mf over a small time interval ∆, we can do so in
two ways:

1. If we already knew the density, we could simply approximate the change in Mf by
linearly extrapolating the density at each point in the state space:

Mf (t+ ∆) =
∑
n

∫∫
fn(a, z)

∂gn(a, z, t)

∂t
∆ da dz.

2. Given the controlled drifts and jumps of agents at each point in the state space, we
can instead start by deriving the expected change in f :

dfn(a, z) =
∂f

∂a

∂a

∂t
∆ +

∂f

∂z

∂z

∂t
∆ + p(∆)

∑
i

p{n→ i}[fi(a, z)− fn(a, z)]

=
∂f

∂a
∆ +

∂f

∂z
hn(a, z, t) ∆ + λ

∑
i

mni(a, z, t)[fi(a, z)− fn(a, z)] ∆

87I thank Tommaso Santini for helpful comments on a previous version of this derivation.
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where the second line substitutes in the controlled stochastic processes and uses the
small-∆ approximation p(∆) = 1 − e−λ∆ ≈ λ∆ for the probability of a migration
opportunity arriving. Then integrate over all points in the state space, and for each
point integrate over all possible paths crossing that point at t to get

Mf (t+ ∆) =
∑
n

∫∫
gn(a, z, t)

[
∂

∂a
fn(a, z) + hn(a, z, t)

∂

∂z
fn(a, z)

+ λ
∑
i

mni(a, z, t)[fi(a, z)− fn(a, z)]

]
∆ da dz.

Finally, integrate by parts, recalling that f vanishes on the boundaries, to get

Mf (t+ ∆) =
∑
n

∫∫
fn(a, z)

[
− ∂

∂a
gn(a, z, t)− ∂

∂z
[hn(a, z, t)gn(a, z, t)]

+ λ
∑
i

min(a, z, t)[gi(a, z, t)− gn(a, z, t)]

]
∆ da dz,

where the second line just rearranges terms.88

Now set the two expressions equal, divide by ∆, and note that, because f was arbitrary, we
must have, at every point in the state space,

∂tgn(a, z, t) = − ∂

∂a
gn(a, z, t)− ∂

∂z
[hn(a, z, t)gn(a, z, t)]

+ λ
∑
i

min(a, z, t)[gi(a, z, t)− gn(a, z, t)],

which is the Kolmogorov forward equation (9).

A.4 Derivation of the balanced growth path

A.4.1 Detrending the equilibrium conditions

The goal in this section is to derive the detrended equations at the end of Section 2.2.4.
To that end, recall the Hamilton-Jacobi-Bellman equation (5) and the Kolmogorov forward
equation (9). Recall also Definition 2, which states that a balanced growth path is a number
γ and a tuple of functions (v, σ, µ, φ) on N × [0, A]× R+ such that

Vn(a, z, t) = eγt vn(a, x)

sn(a, z, t) = σn(a, x)

mn(a, z, t) = µn(a, x)

gn(a, z, t) = e−γtφn(a, x)

for all (n, a, z, t) and (V, s,m, g) is an equilibrium with the initial condition gn(a, z, 0) =
φn(a, z), where x ≡ ze−γt denotes productivity relative to trend.

Start with the Hamilton-Jacobi-Bellman equation. We want to show that (i) the
expression eγt can be factored out of each of its terms and that (ii) the expression that

88Note that
∑
n

∑
i gnmnifi =

∑
i

∑
n giminfn simply by relabeling.
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remains after dividing through by eγt is independent of time. We will go term-by-term
through the derivation:

Vn(a, z, t) = eγtvn(a, x),

∂tVn(a, z, t) = γeγtvn(a, ze−γt)− γ[ze−γt]eγt ∂2vn(a, ze−γt)

= eγt[γvn(a, x)− γx ∂xvn(a, x)],

∂zVn(a, z, t) = eγt[∂zvn(a, ze−γt)]

= eγte−γt ∂2vn(a, ze−γt)

= ∂xvn(a, x),

Zn(t) =

(
L

∫∫ (
xeγt

)ζ
e−γtφn(a, x) da

dz

dx
dx

)1/ζ

= eγt
(
L

∫∫
xζφn(a, x) da dx

)1/ζ

≡ eγtXn,

sn(a, z, t) =

(
κ̄ ∂zVn(a, z, t)

BnTnLαn

(
Zn(t)

z

)1−β
) 1

1−η

=

(
κ̄ ∂xvn(a, x)

BnTnLαn

(
Xn

x

)1−β
) 1

1−η

≡ σn(a, x),[
κ(s)zβZn(t)1−β] =

[
κ(σ)(xeγt)β(eγtXn)1−β] ,

= eγt
[
κ(σ)xβX1−β

n

]
,

∂aVn(a, z, t) = eγt∂avn(a, x),

mni(a, z, t) =
τ−εni [eγtvi(a, x)]ε∑
k τ
−ε
nk [eγtvk(a, x)]ε

=
τ−εni vi(a, x)ε∑
k τ
−ε
nk vk(a, x)ε

≡ µni(a, x).

All together, we see that eγt can be factored out of the Hamilton-Jacobi-Bellman equation,
leaving us with

(ρ− γ)vn(a, x) = Bn
(
TnL

α
n[1− σn(a, x)]− pnLθnn

)
x

+ ∂xvn(a, x)
(
κ[σn(a, x)]xβX1−β

n − γx
)

+ λ
∑

i
µni(a, x)

[
µni(a, x)−

1
ε

τni
vi(a, x)− vn(a, x)

]
+ ∂avn(a, x),
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with terminal condition vn(A, x) = 0 for all (n, x).
Now turn to the Kolmogorov forward equation. We want to show that (i) the expression

e−γt can be factored out of each of its terms and that (ii) the expression that remains after
dividing through by e−γt is independent of time. We will again proceed term-by-term:

gn(a, z, t) = e−γtφn(a, x),

∂tgn(a, z, t) = −γe−γtφn(a, x)− γxe−γt∂xφn(a, x),

∂

∂z
[hn(a, z, t)gn(a, z, t)] =

∂

∂z

(
∂z

∂x

∂x

∂z

)
[eγtκ(σ)xβX1−β

n e−γtφn(a, x)],

= e−γt
(
∂x[κ(σ)xβX1−β

n φn(a, x)]
)
,

∂agn(a, z, t) = e−γt∂aφn(a, x),

g(z, t) ≡ e−γtφ(x),

where the last line is a valid definition of φ by Assumption 1. All together, we see that e−γt

can be factored out of the Kolmogorov forward equation, leaving us with

−γ[φn(a, x) + x ∂xφn(a, x)] = −∂x[hn(a, x)φn(a, x)]

− λ[1− µnn(a, x)]φn(a, x)

+ λ
∑

i 6=n
µin(a, x)φi(a, x)

− ∂aφn(a, x)

(A.10)

or, after rearranging,

0 = −∂x[(hn(a, x)− γx)φn(a, x)]− λ[1− µnn(a, x)]φn(a, x)

+ λ
∑

i6=n
µin(a, x)φi(a, x)− ∂aφn(a, x)

with the slight abuse of notation

hn(a, x) ≡ κ[σn(a, x)]xβX1−β
n .

A.4.2 Properties of the value function

Lemma 1. The value function vn(a, x) is decreasing in age, a, and increasing in relative
human capital, x. Moreover, the second partial ∂x,xvn(a, x) is always non-positive, as is the
cross partial ∂a,xvn(a, x).

Proof. The value function vn(a, x) does not have a closed form, but one can nonetheless
deduce the four claims. This argument takes as given that, for any given n, there are no
kinks in the value function and all derivatives up to second order exist.

(i) Consider two workers, one with state (n, a, x) and another with state (n, a′, x), where
a′ < a. Let the first worker use her optimal investment and migration policies so
that she achieves the value vn(a, x). Let the second worker copy the investment and
migration decision of the first worker. The second worker attains a value ṽn(a′, x) >
vn(a, x) because he has extra life over which to reap returns from his accumulated skill.
If he used his own optimal policies, he would attain the value vn(a′, x) ≥ ṽn(a′, x).
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(ii) Consider two workers, one with state (n, a, x) and another with state (n, a, x′), where
x < x′ and a < A. Let the first worker use her optimal investment and migration
policies so that she achieves the value vn(a, x). Let the second worker copy the invest-
ment and migration decision of the first worker. The second worker attains a value
ṽn(a, x′) > vn(a, x) because, for any level of investment, he will earn more income
and reap higher returns to his investment. If he used his own optimal policies, he
would attain the value vn(a, x′) ≥ ṽn(a, x′). When a = A, vn(A, x) = 0 for all x, so
∂xvn(A, x) = 0.

(iii) The concavity of the value function in human capital follows from backwards induction
by repeatedly applying the argument used in Stokey and Lucas (1989, Theorem 4.8) to
the discrete-time analogue of the value function and taking limits as ∆t→ 0. Because
the human capital production function is strictly concave in current human capital,
the worker’s constraint set is convex. Because, in addition, her earnings are linear in
her human capital, it is easy to verify that her flow utility is jointly concave in (i) her
current human capital and (ii) her human capital after investing for a period of length
∆t. Finally, the terminal value function vn(A, x) ≡ 0 is trivially (weakly) concave in
human capital.

(iv) This follows from (i) and (ii) by backward induction from the marginal value of human
capital at the maximum age: ∂xvn(A, x) = 0 for all (n, x).

A.4.3 Derivation of the growth rate

The growth rate γ is determined by integrating (in the sense of Lebesgue) the Kolmogorov
forward equation over the state space and leveraging two facts: (i) there is no net migration
on a bgp (Equation (11)), and (ii) the marginal density with respect to age is uniform. I
now provide a formal proof.

Theorem 1. A balanced growth path characterized by the functions {v, σ, µ, φ} has the
growth rate

γ =

∑
n

∫ A
0
κ[σn(a, x)]xβX1−β

n φn(a, x) da∑
n

∫ A
0
xφn(a, x) da

, ∀x ∈ supp(φ). (16)

Proof. Let X ≡ [xsupp,∞) ⊂ R++, where xsupp is any arbitrary relative productivity in
the support of φ. Although the support of φ is endogenous, Assumption 1 guarantees that
xsupp > 0 for any permissible choice. Moreover, because the vibrancy is well-defined, it
must be that limx→∞ xφn(a, x) = 0 for any (n, a), hence limx→∞ hn(a, x)φn(a, x) = 0 for
any (n, a) as well. Both limit statements are trivial whenever the support of φ has a finite
upper bound.

Now consider the detrended Kolmogorov forward equation as specified in (A.10). In-
tegrate both sides over the space N × [0, A]×X and make use of the following identities:∑

n

∫∫
φn(a, x) dx da = 1− Φ(xsupp)

∑
n

∫∫
λ
∑
i 6=n

µin(a, x)φi(a, x) dx da =
∑
n

∫∫
λ[1− µnn(a, x)]φn(a, x) dx da
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∑
n

∫∫
∂aφn(a, x) da dx = 0,

where the first follows because φ is a probability density; the second, because there is no
net migration on a bgp; the third, because the marginal distribution of age is uniform. Now
isolating γ yields

γ =

∑
n

∫∫
∂x[hn(a, x)φn(a, x)] dx da

1− Φ(xsupp) +
∑
n

∫∫
x ∂xφn(a, x) dx da

.

Integrating the numerator with respect to x yields∑
n

∫∫
∂x[hn(a, x)φn(a, x)] dx da =

∑
n

∫ [
hn(a, x)φn(a, x)

∣∣∣
X

]
da

= −
∑
n

∫
hn(a, xsupp)φn(a, xsupp) da

by the Fundamental Theorem of Calculus. Integrating the second term of the denominator
by parts with respect to x yields∑

n

∫∫
x ∂xφn(a, x) dx da =

∑
n

∫ [
xφn(a, x)

∣∣∣
X
−
∫
φn(a, x) dx

]
da

= −
∑
n

∫
xsuppφn(a, xsupp) da− [1− Φ(xsupp)].

Substituting these expressions back into the expression for γ yields

γ =

∑
n

∫ A
0
hn(a, xsupp)φn(a, xsupp) da∑

n

∫ A
0
xsupp φn(a, xsupp) da

.

Since xsupp ∈ supp(φ) was arbitrary, this proves the claim.
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B Data

B.1 Decennial Census and American Community Survey . . . . . . . . . . . . . . 63
B.2 BEA Regional Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 Decennial Census and American Community Survey

Unless otherwise specified, data at the level of Metropolitan Statistical Areas (msas) use
the February 2013 omb definitions of msas.

2010 Decennial Census

From the 2010 Decennial Census, I collect the population count of each msa. I use 2010
population counts only to group cities together, as described in the main text.

2010 ACS 1-year sample

From the 2010 acs 1-year sample, I compute the share of all 15–19 year olds living in each
msa, with msas defined according to the December 2009 omb definitions. These data are
downloaded from ipums (Ruggles et al., 2022).

2011-15 ACS 5-year sample

From the 2011–15 acs 5-year sample, I compute empirical c.d.f. of age and wages within
each msa among workers who are employed full-time, which I define by (i) being employed,
(ii) working at least 35 hours per week, and (iii) working at least 40 weeks per year. I also
compute the college share among those employed full-time in each msa, where I define college
as completing at least four years of post-secondary education. These data are downloaded
from ipums (Ruggles et al., 2022).

2011–15 ACS 5-year Migration Flow files

The acs 5-year Migration Flow files comprise period estimates that measure where people
lived when surveyed (“current residence”) and where they lived one year prior (“residence
one year ago”). The data are collected continuously over a five-year period in order to
provide a large enough sample for estimates in smaller geographies. The flow estimates
represent the annual number of movers between msas for the five-year period over which
data was collected.

The 2011–15 release is cross-tabulated by demographic characteristics: age, sex, race,
and Hispanic origin. I only use the information on age. Age is broken down into the following
fifteen categories: 1 to 4 years, 5 to 17 years, 18 to 19 years, 20 to 24 years, 25 to 29 years,
30 to 34 years, 35 to 39 years, 40 to 44 years, 45 to 49 years, 50 to 54 years, 55 to 59 years,
60 to 64 years, 65 to 69 years, 70 to 74 years, and 75 years and over. To be consistent with
the rest of my quantitative procedure, I restrict my attention to flows of people between age
20 and age 59.
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B.2 BEA Regional Accounts

From the bea Regional Accounts, I collect the 2013 local area personal income files at
the county level and aggregate them to the msa level. My primary measure of city size is
counts of wage and salary jobs. My primary measure of city output is wages and salaries
in thousands of current U.S. dollars. My results are robust to using broader measures, like
total population for city size and gross metro product for city output. Data on gross metro
product are collected directly at the msa level.
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C Computation

C.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.2 Overview of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.3 Solving the Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . . . 66
C.4 Solving the Kolmogorov forward equation . . . . . . . . . . . . . . . . . . . . 69

C.1 Set up

A balanced growth path of the economy can be represented by the following system of
equations that I aim to solve numerically:

(ρ− γ)vn(a, x) = Bn[TnL
α
n(1−σ)− pnLθnn ]x+ [∂xvn(a, x)]dn(a, x) + ∂avn(a, x)

+ λ
∑

i
µni(a, x) [ξni(a, x)vi(a, x)− vn(a, x)]

(C.1)

0 = −∂x[dn(a, x)φn(a, x)]− ∂aφn(a, x)

− λφn(a, x) + λ
∑

i
µni(a, x)φi(a, x)

(C.2)

Xn =

(
L

∫∫
xζ φn(a, x) dx da

) 1
ζ

, ∀n ∈ N (C.3)

Ln = L

∫∫
φn(a, x) dx da, ∀n ∈ N (C.4)

γ =

∑
n

∫ A
0

[hn(a, x)φn(a, x)] da∑
n

∫ A
0

[xφn(a, x)] da
, ∀x ∈ supp(φ) (C.5)

with terminal condition vn(A, x) = 0 and initial condition φn(0, x) = 1
Aφn(x) for any (n, x),

where

dn(a, x) = hn(a, x)− γx

hn(a, x) = κ[σn(a, x)]xβX1−β
n

are optimal drift and skill accumulation, respectively, with optimal time spent learning
σn(a, x) the solution to

κ′(σ) =
BnTnL

α
n

∂xvn(a, x)

(
x

Xn

)1−β

, (C.6)

and where

µni(a, x) =
τ−εni vi(a, x)ε∑
k τ
−ε
nk vk(a, x)ε

ξni(a, x) =
µni(a, x)−

1
ε

τni
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are the optimal migration shares and selection bonuses, respectively. Relative to the systems
of equations presented in Achdou et al. (2022, Num. Appx.), the new components here are
the endogeneity of the discrete state transition, finite lives, and growth. Ben Moll describes
how to incorporate deterministic finite lives in this note.

C.2 Overview of algorithm

Below is a copy of the overview shown in Section 3.1.

Data: parameters {A, ρ, λ, ε, α, ζ, β, η, κ̄, xscale},
location fundamentals {Bn, Tn, pn, θn, τni}, and
relative productivity distribution of entrants φ

Result: bgp {v, σ, µ, φ; γ}
Initialize with guess {γ0,L0,X0}. Denote iterations by ` = 0, 1, 2, . . .;
while not converged do

1Given {γ`,L`,X`}, solve the Hamilton-Jacobi-Bellman equation (12) using a finite

difference method and calculate the policy functions σ`n(a, x) and µ`ni(a, x);

2Given σ`n(a, x) and µ`ni(a, x), solve the Kolmogorov forward equation (13) for φ`n(a, x)
using a finite difference method;

3Given φ`n(a, x), compute the corresponding local populations and vibrancies

L̃`n = L

∫∫
φ`n(a, x) dx da, X̃`

n =

(
L

∫∫
xζφ`n(a, x) dx da

) 1
ζ

for each n, and compute the implied growth rate

γ̃ι =

∑
n

∫ A
0
κ[σιn(a, x)]xβ(Xι

n)1−β φιn(a, x) da∑
n

∫ A
0
xφιn(a, x) da

, x ∈ supp(φι)

as defined in (16);

if {γ̃`, L̃`, X̃`} close enough to {γ`,L`,X`} then
converged;

else

construct {γ`+1,L`+1,X`+1} as a linear combination of the previous guess and the
computed values;

end

end

Note that in place of iterating on the vector {γ`,L`,X`} toward a fixed point, one
could instead solve for the fixed point using any of a number of nonlinear solvers. See Judd
(1998, Ch.5) for a review of the underlying algorithms.

C.3 Solving the Hamilton-Jacobi-Bellman equation

To solve the Hamilton-Jacobi-Bellman equation, I use a finite difference method: the semi-
implicit upwind scheme. I discretize the state space, denoting the grid points by xi, i =
1, . . . , I and aj , j = 1, . . . , J with ∆x = xi+1 − xi and ∆a = aj+1 − aj for all i, j. I
approximate the functions (v, φ) at each of these N × I × J grid points and denote

vji,n = vn(xi, aj) and φji,n = φn(xi, aj).
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I approximate the derivatives with respect to a and x with either a forward- or backward-
difference approximation:

∂Fx v
j
i,n :=

vji+1,n − v
j
i,n

∆x
,

∂Bx v
j
i,n :=

vji,n − v
j
i−1,n

∆x
,

∂Fa v
j
i,n :=

vj+1
i,n − v

j
i,n

∆a
,

∂Ba v
j
i,n :=

vji,n − v
j−1
i,n

∆a
.

An upwind scheme means that one approximates the derivative ∂xvn(xi, aj) by ∂Fx v
j
i,n when-

ever the drift of the state variable x is positive and by ∂Bx v
j
i,n whenever it is negative.

Because age only drifts forward, I always approximate ∂avn(ai, xj) by ∂Fa v
j
i,n. The qualifier

semi-implicit just describes the method of iterating on the value function.
Let vj be the N×I column vector whose components are the values for both discretized

age-aj value functions. That is,

vj = [vj1,1, v
j
2,1, . . . , v

j
I,1, v

j
1,2, . . . , v

j
I,2, . . . , v

j
1,N , . . . , v

j
I,N ]′.

Define the N × I vector uj similarly. Then, for a given set {γ,L,X}, the value function can
be found by solving

(ρ− γ)vj = uj+1 + Π̃j+1vj +
vj+1 − vj

∆a
(C.7)

by iterating backwards from the terminal condition vJ = 0, where Π̃j = Πj � Ξj is the
Hadamard product between the transition matrix Πj , defined by

Πj =



πj1 Mj
1,2 Mj

1,3 ··· Mj
1,N

Mj
2,1 πj2 Mj

2,3 ··· Mj
2,N

... Mj
3,2

. . .
. . .

...
...

...
. . .

. . . Mj
N−1,N

Mj
N,1 Mj

N,2 ··· Mj
N,N−1 πjN

,

Mj
kn =



λµj1,kn 0 ··· ··· ··· 0

0 λµj2,kn 0
. . .

. . .
...

... 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 ··· ··· ··· 0 λµjI,kn



πjn =



πj1,1 πF,j1,1 0 ··· ··· 0

πB,j2,1 πj2,1 πF,j2,1 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 0 πB,jI−1,1 π
j
I−1,1 π

F,j
I−1,1

0 ··· ··· 0 πB,jI,1 πjI,1
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with the entries of πjn given by

πB,ji,n = −
(dB,ji,n )−

∆x

πF,ji,n =
(dF,ji,n )+

∆x

πji,n = −πF,ji,n + πB,ji,n − λ(1− µji,nn),

and the selection matrix Ξj , given by

Ξj =



ξj1 ξj1,2 ξj1,3 ··· ξj1,N

ξj2,1 ξj2 ξj2,3 ··· ξj2,N

... ξj3,2

. . .
. . .

...
...

...
. . .

. . . ξjN−1,N

ξjN,1 ξjN,2 ··· ξjN,N−1 ξjN

,

ξjkn =



ξj1,kn 0 ··· ··· ··· 0

0 ξj2,kn 0
. . .

. . .
...

... 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 ··· ··· ··· 0 ξjI,kn


, k 6= n

ξjn =



π
j
1,n+λ(ξ

j
1,nn−1)µ

j
1,nn

π
j
1,n

0 ··· 0

0
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . 0

0 ··· 0
π
j
I,n

+λ(ξ
j
I,nn

−1)µ
j
I,nn

π
j
I,n


The transition matrices Πj , j = 1, 2, . . . , J encode the evolution of the stochastic

process (at, xt, nt). Note, in particular, that Πj satisfies all the usual properties of a Poisson
transition matrix: all rows sum to zero, all diagonal elements are non-positive, and all off-
diagonal elements are non-negative.

Returning to (C.7), note that it can be recast so that vj appears as the solution to a
matrix equation:

Bj+1vj = bj+1, where Bj+1 =

(
1

∆a
+ ρ− γ

)
I− Π̃j+1,

bj+1 = uj+1 +
1

∆a
vj+1.

(C.8)

This matrix equation can be solved efficiently with sparse matrix routines.
Let us summarize the sub-algorithm to solve the Hamilton-Jacobi-Bellman equation.

For a given set {γ,L,X}, iterate backwards from the terminal conditions vJ = 0 and
δFx v

J
i,n = 0 as follows:

1. compute σj+1 from

σj+1
i,n = min

1,max


[(

κ̄∂xv
j+1
i,n

BnTnLαn

)(
Xn

x

)1−β
] 1

1−η

, 0
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and µj+1 from

µj+1
i,kn =

τ−εkn (vj+1
i,n )ε∑

n′ τ
−ε
kn′(v

j+1
i,n′ )

ε
;

2. compute uj+1 and Π̃j+1;

3. find vj from Bj+1vj = bj+1;

4. stop once you compute v1.

C.4 Solving the Kolmogorov forward equation

I now turn to the solution of (C.2) subject to (C.4). I discretize these as follows:

0 = −[dji,nφ
j
i,n]′ − λ(1− µji,n)φji,n + λ

∑
n′ 6=n

µji,nφ
j
i,n′ −

φj+1
i,n − φ

j
i,n

∆a
(C.9)

1

A
=
∑
n

∑
i

φji,n∆x. (C.10)

I will approximate the derivative −[di,nφi,n]′ by

−
(dF,ji,n )+φji,n − (dF,ji−1,n)+φji−1,n

∆x
−

(dB,ji+1,n)−φji+1,n − (dB,ji,n )−φji,n
∆x

where (dFi,n)+ is the forward approximation for skill accumulation that comes from the final
step of the hjb iterative procedure. It follows that I can approximate the Kolmogorov
forward equation by

0 = πB,ji+1,nφ
j
i+1,n + πji,nφ

j
i,n + πF,ji−1,nφ

j
i−1,n + λ

∑
i

µi,nφ
j
i,m +

φj+1
i,n − φ

j
i,n

∆a
,

which can be written in matrix notation as

0 =
(
Πj
)T

φj − φj+1 − φj

∆a
(C.11)

where

φj =
[
φj1,1, . . . , φ

j
I,1, φ

j
1,2, . . . , φ

j
I,2, . . . , φ

j
1,N , . . . , φ

j
I,N

]′
Note that (C.11) can be solved either explicitly,

φj+1 = ∆a
(
Πj
)T

φj + φj ,

or implicitly,

φj+1 =
(
I−∆a

(
Πj
)T)−1

φj ,

from the initial condition φ1 = φ. Note that I can use Πj to solve for φj+1 because I’ve
already solved for it when I did the value function iteration.

Note, too, that these schemes preserve mass: starting from any initial distribution φ1

that sums to one, all future φj ’s also sum to one. This follows from the fact that the rows of
the transition matrices Πj sum to zero. The implicit scheme is also guaranteed to preserve
the positivity of φj for arbitrary time steps ∆a.
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