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Introduction

• Micro estimates: Workers learn more in big cities
[Glaeser and Maré (2001), Baum-Snow and Pavan (2012), Wang (2016), De la Roca and Puga (2017)]

“[W]e find that workers in bigger cities . . . obtain an immediate static [earnings] premium and

accumulate more valuable experience. The additional value of experience in bigger cities persists after

leaving and is stronger for those with higher initial ability." (De la Roca and Puga, 2017)

• We think learning drives growth → How does the spatial dist. matter for growth?
[Lucas (2009), Lucas and Moll (2014), Buera and Lucas (2018), Gabriel and Lucas (2019) ]

• If space matters → Spatial policy must weigh long-run growth/welfare response
[static: Hsieh and Moretti (2019), Fajgelbaum and Gaubert (2020), Rossi-Hansberg, Sarte, and Schwartzman (2021)]
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This paper: Three contributions

1. Theory: Local human capital externalities → Agglomeration & Growth
• system of cities
• heterogeneous workers learn & migrate over the life cycle
• human capital process drives both agglomeration and growth

• learn from others in your city, more if bigger or more skilled (local externalities)
• learning → human capital dist. shifts right → output grows

• characterize “cities drive growth”: growth rate = f(spatial distribution)

Solves the hard problem of regional econ (Breinlich, Ottaviano, and Temple, 2014)

• “How to model growth and agglomeration as outcomes of a joint process”
• Agents must know distribution of economic activity over time & space → high-dimensional
• how? Equilibrium is a mean field game (Achdou et al., 2022) → can track distribution
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This paper: Three contributions

2. Quantitative: Using U.S. data, jointly rationalize . . .

• . . . urban cross-section:
• match city size distribution
• big cities more productive, more expensive, more skilled on avg. (Glaeser, 2008)

• . . . worker panels:
• life-cycle of human capital investment (Ben-Porath, 1967; Huggett, Ventura, and Yaron, 2006)

• migration driven by expected income; young & edu. move more (Kennan and Walker, 2011)

• city size wage premium = higher wage level + faster wage growth w/ permanent value
(Glaeser and Maré, 2001; Baum-Snow and Pavan, 2012; Duranton and Puga, 2022)

• . . . aggregate growth: 2% per year on BGP
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This paper: Three contributions

3. Long-run effects of place-based policy
• policy: relax LURs in NY and SF to U.S. median
• outcome: aggregate growth increases by 13bp
• through what channel?

• not syphoning skill from elsewhere
• instead, stronger dynamic spillover → faster human capital accumulation

Spatial policy → ∆ spatial distribution → ∆ growth in two (complementary) ways:
• by attracting more skilled workers to particular cities (e.g., push skilled to NY)
• by producing more skilled workers for the economy overall (e.g., push young to NY)
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Outline for today

1. Model: setup, equilibrium, BGP, main result

2. Quantitative analysis: calibration/estimation, predictions

3. Counterfactual place-based policy

4. Conclusion
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Model



Environment

• continuous time t ∈ [0,∞), discrete cities n = 1, . . . , N

• mass L of workers with human capital z ∈ R++ and age a ∈ [0, A]

• discount at rate ρ
• hand-to-mouth
• consume traded good c (numeraire) and land (strict necessity), benefit from amenity Bn

• two choices at each t:
• raw labor: learn (s) and work (1− s) → income tomorrow vs. today
• migration: city n s.t. opportunity iid∼ Poisson(λ) & taste bωn

iid∼ T2EV(ε) & cost τin

• expected flow utility:

Un(s; z, t) = Bn︸︷︷︸
Amenity

[

Income︷ ︸︸ ︷
yn(s; z, t)−

Urban cost︷ ︸︸ ︷
Pn(z, t) ]︸ ︷︷ ︸

Consumption flow
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City characteristics: Congestion vs. Agglomeration

Endogenous city populations: Ln(t) = L
∫∫

gn(a, z, t) dz da

Congestion through land

• pay heterogeneous flow cost zPn(t) for
accomodation in city n, where

Pn(t) = pnLn(t)θn

• microfoundation: monocentric city with
commuting cost as forgone income
(Duranton and Puga, 2015)

Agglomeration through static & dynamic channels

• Through income: yn(s; z, t) = TnLn(t)α(1−s)z
• Define the vibrancy of city n as

Zn(t) =

(
L

∫∫
zζgn(a, z, t)dz da

) 1
ζ

≡ Ln(t)
1
ζ z̄n,ζ(t)

• Through learning: law of motion for skill

dz

dt
= κ(s)zβZn(t)1−β

8 / 19



City characteristics: Congestion vs. Agglomeration

Endogenous city populations: Ln(t) = L
∫∫

gn(a, z, t) dz da

Congestion through land

• pay heterogeneous flow cost zPn(t) for
accomodation in city n, where

Pn(t) = pnLn(t)θn

• microfoundation: monocentric city with
commuting cost as forgone income
(Duranton and Puga, 2015)

Agglomeration through static & dynamic channels

• Through income: yn(s; z, t) = TnLn(t)α(1−s)z
• Define the vibrancy of city n as

Zn(t) =

(
L

∫∫
zζgn(a, z, t)dz da

) 1
ζ

≡ Ln(t)
1
ζ z̄n,ζ(t)

• Through learning: law of motion for skill

dz

dt
= κ(s)zβZn(t)1−β

8 / 19



City characteristics: Congestion vs. Agglomeration

Endogenous city populations: Ln(t) = L
∫∫

gn(a, z, t) dz da

Congestion through land

• pay heterogeneous flow cost zPn(t) for
accomodation in city n, where

Pn(t) = pnLn(t)θn

• microfoundation: monocentric city with
commuting cost as forgone income
(Duranton and Puga, 2015)

Agglomeration through static & dynamic channels

• Through income: yn(s; z, t) = TnLn(t)α(1−s)z

• Define the vibrancy of city n as

Zn(t) =

(
L

∫∫
zζgn(a, z, t)dz da

) 1
ζ

≡ Ln(t)
1
ζ z̄n,ζ(t)

• Through learning: law of motion for skill

dz

dt
= κ(s)zβZn(t)1−β

8 / 19



City characteristics: Congestion vs. Agglomeration

Endogenous city populations: Ln(t) = L
∫∫

gn(a, z, t) dz da

Congestion through land

• pay heterogeneous flow cost zPn(t) for
accomodation in city n, where

Pn(t) = pnLn(t)θn

• microfoundation: monocentric city with
commuting cost as forgone income
(Duranton and Puga, 2015)

Agglomeration through static & dynamic channels

• Through income: yn(s; z, t) = TnLn(t)α(1−s)z
• Define the vibrancy of city n as

Zn(t) =

(
L

∫∫
zζgn(a, z, t)dz da

) 1
ζ

≡ Ln(t)
1
ζ z̄n,ζ(t)

• Through learning: law of motion for skill

dz

dt
= κ(s)zβZn(t)1−β

8 / 19



Some notes on learning

dz

dt
= κ(s)zβZn(t)1−β

where

• Zn(t) = Ln(t)
1
ζ z̄n,ζ(t)

• κ(0) = 0, κ′ > 0, κ′′ < 0

What to notice:

• agglomeration: anyone can learn from anyone. . .

• supermodularity

• classical form

• returns to scale
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Some notes on learning

dz

dt
= κ(s)zβZn(t)1−β

where

• Zn(t) = Ln(t)
1
ζ z̄n,ζ(t)

• κ(0) = 0, κ′ > 0, κ′′ < 0

What to notice:

• agglomeration

• supermodularity

• classical form

• returns to scale: DRS in time, CRS in tuple (z, Zn)
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Worker’s problem

• Given city sizes L(t) ≡ {L1(t), . . . , LN (t)} and vibrancies Z(t) ≡ {Z1(t), . . . , ZN (t)}
• Hamilton-Jacobi-Bellman equation: after expectations over T2EV preferences. . .

ρVn(a, z, t) = max
s∈[0,1]

Bn[TnLn(t)α(1−s)− Pn(t)]z︸ ︷︷ ︸
flow utility

+∂zVn(a, z, t)
[
κ(s)zβZn(t)1−β

]︸ ︷︷ ︸
skill gains


+ λ

∑
i
mni(a, z, t) [ξni(a, z, t)Vi(a, z, t)− Vn(a, z, t)]︸ ︷︷ ︸

expected migration gains

+ ∂aVn(a, z, t) + ∂tVn(a, z, t)

with optimal migration shares and selection effect:

mni(a, z, t) =
τ−εni Vi(a, z, t)

ε∑
k τ
−ε
nk Vk(a, z, t)ε

ξni(a, z, t) =
1

Nτni
mni(a, z, t)

− 1+ε
ε

• Terminal condition: Vn(A, z, t) = 0 for all (n, z, t)
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How do city characteristics evolve?

• Recall: {L,Z} are entirely determined by the distribution of (a, z) across n

• Demographics: uniform marginal age distribution, entrants ∼ g
n
(z, t) replace exiters

• Kolmogorov forward equation:

∂tgn(a, z, t) = − ∂z[hn(a, z, t)gn(a, z, t)]︸ ︷︷ ︸
skill accum.

−λ[1−mnn(a, z, t)]gn(a, z, t)︸ ︷︷ ︸
outflow: migration

+ λ
∑
i 6=n

min(a, z, t)gi(a, z, t)︸ ︷︷ ︸
inflow: migration

− ∂agn(a, z, t)︸ ︷︷ ︸
aging

with initial condition gn(0, z, t) = 1
Agn(z, t) and optimal skill accumulation:

hn(a, z, t) = κ[sn(a, z, t)]zβZn(t)1−β

11 / 19



Look for a balanced growth path

• An equilibrium: HJB (V , s, m) + KFE (g) + feasibility ({L,Z})

• A balanced growth path is a number γ and functions (v, σ, µ, φ) on N ×X × [0, A] s.t.

Vn(a, z, t) = eγt vn (a, x)

sn(a, z, t) = σn (a, x)

mni(a, z, t) = µni (a, x)

gn(a, z, t) = e−γt φn (a, x)

and (V, s,m, g) is an equilibrium with initial condition gn(a, z, 0) = φn(a, z), where

x ≡ ze−γt is relative human capital.

• Needs: l.b. and quantiles of g grow with those of g → entrants getting better

• Implies: constant city size, same productivity growth (in progress: solving transitions)
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The detrended BGP: number γ and functions (v,σ,µ,φ)

• workers solve a detrended HJB equation

(ρ− γ)vn(a, x) = Bn(TnL
α
n[1− σn(a, x)]− pnLθnn )x+ ∂xvn(a, x)[hn(a, x)− γx]

+ ∂avn(a, x) + λ
∑
i

µni(a, x)[ξni(a, x)vi(a, x)− vn(a, x)]

• the detrended distribution evolves according to a Kolmogorov forward equation

0 = −∂x{[hn(a, x)− γx]φn(a, x)} − ∂aφn(a, x)

− λ[1− µnn(a, x)]φn(a, x) + λ
∑
i 6=n

µin(a, x)φi(a, x)

• aggregates are feasible:

Xn =

(
L

∫∫
xζ φn(a, x) dx da

) 1
ζ

Ln = L

∫∫
φn(a, x) dx da

• an expression relating the growth rate to the decision rules & distribution
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Main theoretical result: Endogenous growth rate γ(σ,φ)

Add up KF over all (n, a, x), noting no net migration and uniform age density:

γ(σ, φ) =

∑
n

∫
κ[σn(a, x)]xβX1−β

n φn(a, x) da∑
n

∫
xφn(a, x) da

, ∀x ∈ supp(φ)
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, ∀x ∈ supp(φ)

Intuition by building on Uzawa (1965): . . . then reintroduce death (random at rate δ)

max
s
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0

e−(ρ+δ)tc dt s.t.
c = (1− s)z

ż = κ(s)zβZ1−β =⇒ γ = κ(s∗2) < κ(s∗1)
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Main theoretical result: Endogenous growth rate γ(σ,φ)

Add up KF over all (n, a, x), noting no net migration and uniform age density:

γ(σ, φ) =

∑
n

∫
κ[σn(a, x)]xβX1−β

n φn(a, x) da∑
n

∫
xφn(a, x) da

, ∀x ∈ supp(φ)

Intuition by building on Uzawa (1965): . . . then reintroduce worker heterogeneity (a, x)

γ =

∫ A
0
κ[σ(a,x)]xβX1−β φ(a, x) da∫ A

0
xφ(a, x) da

, ∀x ∈ supp(φ) with X =

(
L

∫∫
xζφ(a, x) dx da

) 1
ζ
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• growth rate = weighted avg. of returns to investment, κ(σ)

• more weight to investment in larger, more skilled places
• spatial distribution of human capital matters for growth
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• growth rate = weighted avg. of returns to investment, κ(σ)

• more weight to investment in larger, more skilled places
• spatial distribution of human capital matters for growth

When every idea must be in somebody’s brain, it matters where those brains are.
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Recap: How it solves the “hard problem”

Key idea: Economy is summarized by density gn(a, z, t), which we can track!

Look for a BGP, which is characterized by three equations (MFG + growth): well-posedness

1. HJB: how workers w/ states (n, a, z) learn and migrate given (moments of) distribution
2. Kolmogorov forward: how distribution evolves in response to workers’ decisions
3. endogenous growth: restriction on distribution relating cross-sectional shape to speed

growth rate = f(spatial distribution)

Spatial policy → ∆ spatial distribution → ∆ growth in two (complementary) ways:

• by attracting more skilled workers to particular cities (e.g., send higher x to raise Xn)
• by producing more skilled workers throughout (e.g., send higher σn to already-high Xn)

15 / 19



Recap: How it solves the “hard problem”

Key idea: Economy is summarized by density gn(a, z, t), which we can track!

Look for a BGP, which is characterized by three equations (MFG + growth): well-posedness

1. HJB: how workers w/ states (n, a, z) learn and migrate given (moments of) distribution
2. Kolmogorov forward: how distribution evolves in response to workers’ decisions
3. endogenous growth: restriction on distribution relating cross-sectional shape to speed

growth rate = f(spatial distribution)

Spatial policy → ∆ spatial distribution → ∆ growth in two (complementary) ways:

• by attracting more skilled workers to particular cities (e.g., send higher x to raise Xn)
• by producing more skilled workers throughout (e.g., send higher σn to already-high Xn)

15 / 19



Recap: How it solves the “hard problem”

Key idea: Economy is summarized by density gn(a, z, t), which we can track!

Look for a BGP, which is characterized by three equations (MFG + growth): well-posedness

1. HJB: how workers w/ states (n, a, z) learn and migrate given (moments of) distribution
2. Kolmogorov forward: how distribution evolves in response to workers’ decisions
3. endogenous growth: restriction on distribution relating cross-sectional shape to speed

growth rate = f(spatial distribution)

Spatial policy → ∆ spatial distribution → ∆ growth in two (complementary) ways:

• by attracting more skilled workers to particular cities (e.g., send higher x to raise Xn)
• by producing more skilled workers throughout (e.g., send higher σn to already-high Xn)

15 / 19



Quantitative analysis



Four steps to rationalize patterns in U.S. data

Select cities:

• 378 MSAs → 30 biggest + 4 groups

• congestion elasticity from (Saiz, 2010)

Quantify parameters in three groups:

1. Migration frictions: Back out from 2011–15 ACS migration flows cross-tabbed by age

? target mobility by age & avg. bilateral likelihood, test against bilateral patterns by age

2. Life-cycle investment: Calibrate to structural estimates of Ben-Porath model (nested)

? (computational and data constraints prevent folding #2 into #3 for now)

3. Local fundamentals and elasticities: MDE to match data, prior lit.
• Bn, Tn, pn: city size, income; budget shares
• α, ζ, xscale: Duranton and Puga (2022) wage regression on NLSY panel w/ city groups
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Using U.S. data, the model can jointly rationalize. . .

. . . urban cross-section:

• match city size distribution

• big cities more productive, more expensive,
more skilled on avg. (Glaeser, 2008)
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Using U.S. data, the model can jointly rationalize. . .

. . . worker panels:

• life-cycle of human capital investment
(Ben-Porath, 1967; Huggett, Ventura, and Yaron, 2006)

• migration driven by expected income; young &
educated move more (Kennan and Walker, 2011)

• city size wage premium = higher wage level +
faster wage growth w/ permanent value
(Glaeser and Maré, 2001; Baum-Snow and Pavan, 2012;

Duranton and Puga, 2022)
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Using U.S. data, the model can jointly rationalize. . .

. . . aggregate growth: 2% per year on BGP

17 / 19



Policy counterfactual



Counterfactual: Relaxing LURs in NY and SF

• Relax land use regulations in NY and SF
to median level (↓ θn)

• On new BGP, both cities would have
lower urban costs at old pop. levels

• direct: lower costs attract workers
• indirect: static & dynamic

agglomeration amplify attraction
• result: both bigger, more skilled

• Through what channel?
• not syphoning skill from elsewhere
• instead, stronger dynamic spillover →

faster human capital accumulation

• Overall, growth ↑13bp b/c policy
produces more skilled workers
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Recap: The “hard problem" of regional economics

• A classic hypothesis (Jacobs, 1969; Lucas, 1988; Glaeser, 2011) . . .

human capital spillovers → agglomeration (cities!)
+ human capital accumulation → growth

human capital accumulation s.t. local spillovers → “cities drive growth”

. . . but no models → no testing, no counterfactuals, no optimal policy

• Why not? forward-looking dynamics + can’t average across space → high-dimensional

• This paper: Tackle hard problem with new tools + apply to U.S. data & policy
1. characterize “cities drive growth”: growth rate = f(spatial distribution)

2. rationalize patterns in U.S. data: worker panels, city cross-section, aggregate BGP trend
3. policy counterfactual: relax LURs in NY and SF → aggregate growth increases by 13bp
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Appendix



Formal definition of location history

Key: taste shocks and migrations costs for chosen cities are multiplicative and permanent
(Desmet, Nagy, and Rossi-Hansberg, 2018; Caliendo, Dvorkin, and Parro, 2019)

• birth location nω0
• count of opportunities Iω(t), a Poisson process with arrival rate λ

• each opportunity ι, draw idiosyncratic taste shocks {bω,ιn }n
iid∼ T2EV(ε)

• bilateral migration costs τni
• define . . .

• nωι := her location choice at opportunity ι
• b̂ωι := bω,ιnωι , the realization of her taste shock for her location choice
• τ̂ωι := τnωι−1,n

ω
ι
, the bilateral cost to move to her location choice

• then we have . . .

Uω(t) = Ωω(t)Un(s; z, t) with Ωω(t) :=

Iω(t)∏
ι=1

b̂ωι
τ̂ωι



City structure and urban costs: Setup

• canonical rent gradient model: trade off commuting cost vs. rents, utility equalizes

• here: heterogeneous agents =⇒ assignment problem

• a city is a line with. . .
• all production at single point (“CBD”)
• identical residences of unit length

• commuting takes time: forgo (Tnz)ϑn`
θ of income to commute from distance `

• equilibrium: a rent gradient rn(`, t) and an assignment function Ln(z, t) s.t.
(i) individual optimality holds (Alonso-Muth condition):

θ(Tnz)ϑnLn(z, t)θ = −∂`rn(Ln(z, t), t)

(ii) all workers are allocated to a residence



City structure and urban costs: Solving for equilibrium

• “supply = demand” + sorting: allocate by skill quantile

−∂Ln(z, t)

∂z
=

1

2
gn(z, t) =⇒ Ln(z, t) =

Ln(t)

2
[1−Gn(z, t)]

where gn(z, t) is the marginal density of skill (integrated over age)

• rents: integrate Alonso-Muth condition given assignment function

rn(`, t) = θϑnTn

∫ Ln(t)/2

`

G−1n

(
1− 2l

Ln(t)
, t

)
lθ−1dl.

• urban cost grows at the same rate as income =⇒ consumption grows at constant rate

• would need to guess G each iteration =⇒ let local government collect & redistribute
rents to simplify urban cost to zPn(t) = θϑnTnzLn(t)θ



Equilibrium = Mean Field Game (MFG)

A tuple of functions {V, s,m, g} on N ×R++ × [0, A]×R+ and a tuple of functions {L,P,Z}
on N × R+ such that

1. workers solve the Hamilton-Jacobi-Bellman equation for n = 1, . . . , N , taking paths of
vibrancies Z and city sizes L (thus, also urban costs P) as given;

2. density gn(a, z, t) evolves according to the Kolmogorov forward equation for
n = 1, . . . , N , taking workers’ optimal policy functions as given;

3. vibrancies and urban costs satisfy their definitions given gn(a, z, t):

Zn(t) =

(
L

∫∫
zζgn(a, z, t) dz da

) 1
ζ

, Pn(t) = pn

(
L

∫∫
gn(a, z, t) dz da

)θn
;

4. local population shares sum to one for all t:

1 =

N∑
n=1

Ln(t)

L
=

N∑
n=1

∫∫
gn(a, z, t) dz da.



Loose end: Well-posedness of a BGP?

• Main result: “if BGP {v, σ, µ, φ, γ} exists, it must be that γ = f(σ, φ)”

• But does a BGP exist? no proofs of existence & uniqueness for this class of MFGs
(first-order, smoothing, non-separable Hamiltonian w/ boundaries)

• take three steps to ensure sensible results:
1. impose βκ̄ < ρη, necessary for E&U in Uzawa model with externality
2. show existence & local stability of (discretized) BGP by construction
→ look for one that matches data

3. in counterfactual, select closest BGP (Ahlfeldt et al., 2015)
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Overview of algorithm

Adapt the usual HACT algorithm (Achdou et al., 2022)
0. Begin with guess {γ0,X0,L0}. Denote iterations by ι = 0, 1, 2, . . ..
1. Given {γι,Xι,Lι}, solve detrended HJB w/ finite difference method + calculate policy

functions σιn(a, x) and µιni(a, x).
2. Given σιn(a, x) and µιni(a, x), solve KF for φιn(a, x) w/ finite difference method.
3. Given φιn(a, x), compute vibrancies, populations, and growth rate:

X̃ι
n =

(
L

∫∫
xζ φιn(a, x) dx da

) 1
ζ

, L̃ιn = L

∫∫
φιn(a, x) dx da.

γ̃ι =

∑
n

∫ A
0
κ[σιn(a, x)]xβ(X̃ι

n)1−β φιn(a, x) da∑
n

∫ A
0
xφιn(a, x) da

, x ∈ supp(φι)

4. If {γ̃ι, X̃ι, L̃ι} close enough to {γι,Xι,Lι}, stop. Else, construct {γι+1,Xι+1,Lι+1} as a
linear combination of previous guess and computed values, then return to step 1.



One-slide summary of steps 1 & 2

• Will discretize and solve using a finite difference method to approx. derivatives

• Discretization → HJB non-linear in v, KF linear in φ, solved iteratively over age index j

(ρ− γ)vj = u(vj+1) + Π(vj+1)vj (HJB)

0 =
(
Πj
)T
φj − φ

j+1 − φj

∆a
(KF)

where each Πj is a sparse transition matrix (rows sum to one)



Finite difference approximations to v′n(xi)

• Approximate vn(a, x) at I × J discrete points in the state space, xi, i = 1, . . . , I, and aj ,
j = 1, . . . , J with distance ∆x and ∆a between points, resp.

• Shorthand notation: vji,n := vn(aj , xi)

• Need to approximate ∂xvn(aj , xi) and ∂avn(aj , xi)

• Three different possibilities: written for x, analogous for a

∂Fx v
j
i,n :=

vji+1,n − v
j
i,n

∆x
forward difference

∂Bx v
j
i,n :=

vji,n − v
j
i−1,n

∆x
backward difference

∂Cx v
j
i,n :=

vji+1,n − v
j
i−1,n

2∆x
central difference



Which to use? Always upwind!

• Best solution: upwind scheme
• forward difference whenever drift of state variable is positive
• backward difference whenever drift of state variable is negative

• Upwind version of HJB:

(ρ−γ)vji,n = uji,n+∂Fx v
j
i,n[hji,n−γxi]

++∂Bx v
j
i,n[hji,n−γxi]

−+∂Fa v
j
i,n+λ

∑
k

µji,nk[vji,k−v
j
i,n]

with y+ = max{y, 0} and y− = min{y, 0} for any y
• Complication: drift dji,n ≡ h

j
i,n − γxi itself depends on which approx. is used

hji,n = κ(σji,n)xβi X
1−β
n , where σji,n is a function of ∂xv

j
i,n

• Solution: use σF,ji,n and hF,ji,n when drift is positive; use σB,ji,n and hB,ji,n when negative



Constructing the transition matrix Πj

• Stack the discretized age-aj value functions into a column vector of length NI

vj = [vj1,1, . . . , v
j
I,1, v

j
1,2, . . . , v

j
I,2, . . . , v

j
1,N , . . . , v

j
I,N , ]

′

• Define the matrix entries

πB,ji,n = −
(hB,ji,n − γxi)−

∆x

πF,ji,n =
(hF,ji,n − γxi)+

∆x

π̃ji,n = −πF,ji,n + πB,ji,n − λ[1− µji,nξ
j
i,n]

• Will be NI ×NI, block tri-diagonal, rows sum to one, very sparse



Π̃j =



π̃j1 M̃j
2 M̃j

3 · · · M̃j
N

M̃j
1 π̃j2 M̃j

3 · · · M̃j
N

... M̃j
2

. . . . . .
...

...
...

. . . . . . M̃j
N

M̃j
1 M̃j

2 · · · M̃j
N−1 π̃jN



Mj
n =



λµj1,nξ
j
1,n 0 ··· ··· ··· 0

0 λµj2,nξ
j
2,n 0

. . . . . .
...

... 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 ··· ··· ··· 0 λµjI,nξ
j
I,n



πjn =



π̃j1,1 πF,j1,1 0 ··· ··· 0

πB,j2,1 π̃j2,1 πF,j2,1 0
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . 0 πB,jI−1,1 π̃
j
I−1,1 π

F,j
I−1,1

0 ··· ··· 0 πB,jI,1 π̃jI,1





Implicit method for HJB

• Solve HJB iteratively backwards from terminal condition vJ = 0.

• Want to solve

(ρ− γ)vj = uj+1 + Π̃j+1vj +
vj+1 − vj

∆a
for j = 1, . . . , J.

• Implicit method: the HJB can be written as

Bj+1vj = bj+1, where Bj+1 =

(
1

∆a
+ ρ− γ

)
I− Π̃j+1

bj+1 = uj+1 +
1

∆a
vj+1.

which can be solved efficiently for vj with sparse matrix routines



Solving the KF equation

• Define Πj as Π̃j witout the correction terms (i.e., ξ ≡ 1)

• Recall the discretized, stacked KF equation + adding up for population:

φj+1 =
(
I−∆a

(
Πj
)′)−1

φj

1

A
=
∑
i

φji,1∆x+
∑
i

φji,2∆x

• We’ve already computed Π̃j to get the HJB, just need to correct and transpose

• Just solve directly for φj+1 at almost no extra cost!
• Iterate forward from φ1 = φ

• Renormalize φj if needed to ensure it adds to 1/A



Reminder of algorithm (we just did steps 1 & 2 in depth)

• Outer loop: Guess growth rate γ, solve inner loop, update guess γ(σ, φ), repeat.

• Inner loop: Given γ, adapt the usual HACT algorithm (Achdou et al., 2022)
0. Begin with guess {X0,p0}. Denote iterations by ` = 0, 1, 2, . . ..
1. Given {X`,p`}, solve detrended HJB w/ finite difference method + calculate policy

functions σ`n(a, x) and µ`n(a, x).
2. Given σ`n(a, x) and µ`n(a, x), solve KF for φ`n(a, x) w/ finite difference method.
3. Given φ`n(a, x), compute vibrancies and housing prices:

X̃`
n =

∫∫
xφ`n(a, x) dx da, p̃`n = pn

(∫∫
φ`n(a, x) dx da

)θ
.

4. If {X̃`, p̃`} close enough to {X`,p`}, stop. Else, construct {X`+1,p`+1} as a linear
combination of previous guess and computed values, then return to step 1.

Quantification



Quantification: Select cities and set congestion elasticities, {N , θn}

Spatial scope: 378 MSAs, but smaller are grouped together

• all with 2010 Census pop. > 2mil represented individually → 30 MSAs
(New York, Los Angeles, Chicago, . . . , Cleveland, Kansas City)

• below, group by 500K → 4 additional groups (finer partition in progress)

• groups contain copies → correct geography & pop. scale, miss within-group variation

• why? accord with later regressions from Duranton and Puga (2022)

Congestion elasticity mapped to housing supply (Saiz, 2010)

• housing supply elasticity = f(land availability, land use regulations)

• for groups: use pop.-weighted mean
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Quantification: Determine migration params., {λ, ε, τni}, using ACS data

2011–15 ACS Migration files count moves within/across MSAs cross-tabbed by age

• 5-year average of 1-year migration events, where we can see. . .
1. % that didn’t move, 1− λ(a)

2. % that moved within same MSA, µnn(a)

3. % that moved to any other given MSA, µni(a)

So, do the following:

• set λ(a) to match fraction that move by age group
(decreasing from 26.6% ↘ 7.9% because marriage, family size, home ownership)

• set ε = 3 from Diamond (2016) [w.r.t. real wages at decadal frequency]

• invert bilateral costs from flows using Head-Ries index:

µni(a, x) =
τ−εni Vi(a, x)ε∑
k τ
−ε
nk Vk(a, x)ε

=⇒ µ̄niµ̄in
µ̄nnµ̄ii

=
τ−εni τ

−ε
in

τ−εnn τ
−ε
ii

Targeting mobility by age and avg. bilateral flows, not µni(a,x)
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Quantification: Set human capital investment params., {A,ρ,β, η,φ
n
}

Key idea: Worker’s investment problem nests Ben-Porath (1967) model
→ calibrate to previous structural estimates that used U.S. data

(Heckman, Lochner, and Taber, 1998; Browning, Hansen, and Heckman, 1999; Huggett, Ventura, and Yaron, 2006)

Patterns matched:

• concentrate skill acquisition when young; steeper earnings profile if more schooling
• concavity of the cross-sectional earnings distribution across ages
• trends in mean earnings and earnings dispersion & skewness as the typical cohort ages

Calibration:

• worker’s horizon: A=40 (age 20–59) and ρ=0.10 (discount & IES)
• investment elasticities: β=0.8 and η=0.7

• initial human capital distribution, φ
n

• shape: log-normal with coefficient of variation 0.468
• mean: varies by HS (x≈10) vs. COL (x≈13) → weight by 2011–15 ACS college share
• mass: match share of 15-19 year olds in 2010 ACS 1-year sample
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Quantification: Minimum distance estimator, {α, ζ, xscale,Bn, Tn, pn, κ̄}

Identify {α, ζ, xscale} by matching wage panel regressions from Duranton and Puga (2022)

ln yjnt = an + aj + at +
∑

n
bne

j
nt + Cj

tb + εjnt

Find that ân and b̂n are generally increasing in city size

1. Differential value of experience: pin down ζ

1.0114 =
b̂5mil

b̂2mil︸ ︷︷ ︸
estimate

=

(
X5mil

X2mil

)1−β

︸ ︷︷ ︸
model

=

L 1
ζ

5milx̄5mil,ζ

L
1
ζ

2milx̄2mil,ζ

1−β

2. IV of static city FE on city size: pin down α (can match directly without MDE)

ân = α lnLn + εn

3. IV of medium-run city effect on city size: pin down xscale

ân + b̂nē = (α+ ς) lnLn + εn
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Quantification: Minimum distance estimator, {α, ζ, xscale,Bn, Tn, pn, κ̄}

Remaining scales {Bn, Tn, pn, κ̄} estimated to minimize distance between model and data for:

• total employment in each city per the 2013 BEA Regional Accounts

• the total wage bill in each city per the 2013 BEA Regional Accounts

• constant local expenditure shares across all cities (Diamond, 2016)

• a 2% annual growth rate

Able to match exactly even though cannot invert the model (solving φ nonparametrically)



City-level aggregates: Urban cost, Pn = pnL
θn
n



Optimal annual flows, λ(a)µni(a,x)Ln(a)
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µni(a, x) =
τ−εni vi(a, x)

ε∑
k τ

−ε
nk vk(a, x)

ε

• x (not shown): slight lean to most
vibrant cities

• supermodularity → PAM
(high x with high Xn)

• a: less mobility over time

• always strong home bias
(whited out)

• when old, stop learning
• just trade-off income vs.

urban cost, both vs. τni



Optimal skill drift, hn(a,x)− γx
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dn(a, x) ≡ κ[σn(a, x)]xβX1−β
n − γx

• x: decline w/ relative skill

• a: decline w/ age (zero at A)

• n: inherits from hn

• argx dn(a, x) = 0 is a sink

• density φn(a, x) has finite support if
dn(a, x) has single-crossing
property of zero in x for all n

→ don’t need fat tail



City-level aggregates: ∆Ln (%)



City-level aggregates: ∆Pn (%)



City-level aggregates: ∆Xn (%)



City-level distributions: NY and SF get more skilled, others change little
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A new channel for spatial policy: Produce, not just attract, skill
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