
Agriculture, Trade, and the Spatial Efficiency

of Global Water Use∗

Tamma Carleton†

UC Berkeley and NBER
Levi Crews‡

UCLA
Ishan Nath§

FRB San Francisco

11 April 2025

Please click here for the latest draft.

Abstract

Over 90% of global water use occurs in agriculture, where two distortions—
incomplete water property rights and output-related subsidies and tariffs—
shape production decisions. We combine rich geospatial data with a dynamic
spatial equilibrium model to quantify the effects of agricultural and trade poli-
cies on water scarcity and welfare. Empirically, we document that water-
intensive crops concentrate in water-abundant regions, consistent with com-
parative advantage, though some regions with water-intensive production ex-
hibit rapid groundwater depletion. Our model captures global patterns of pro-
duction, consumption, trade, and groundwater use by incorporating dynamic
aquifer depletion into a multi-country, multi-crop framework. The model is cal-
ibrated to match observed agricultural output and hydrologic trends. Counter-
factual simulations show that eliminating international agricultural trade would
significantly accelerate water depletion—especially in dry, food-importing regions—
and reduce global welfare. Other agricultural policy liberalizations produce
mixed, location-specific effects, highlighting the importance of accounting for
spatial heterogeneity in policy design.
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1 Introduction

Over 90% of global water use by humans occurs in agricultural production, which
is critically dependent on rainfall and local stocks of ground and surface water
(Mekonnen and Hoekstra, 2011). While water itself is generally prohibitively costly
to transport over long distances, nearly 25% of all water consumption is embedded in
internationally traded agricultural products. Across the world, both input markets
for water and output markets for agriculture are subject to pervasive distortions.
Most farmers extract water as an open access resource without defined property
rights (Libecap, 2008), and agricultural markets typically exist amidst a broad array
of subsidies, taxes, tariffs, and trade restrictions (Anderson, Rausser, and Swinnen,
2013). When input market failures prevent the cost of water from reflecting its
scarcity, trade in output markets can exacerbate the impact of this distortion and
have adverse long-run effects on resource depletion and welfare (Chichilnisky, 1994).

A few prominent examples suggest that global trade in agriculture could be con-
tributing to severe regional water depletion. In California’s Central Valley, ground-
water table depths have declined precipitously in recent decades in places that spe-
cialize in producing and exporting highly water-intensive agricultural goods. For
instance, California produces approximately 80% of global almonds, which are the
world’s second most water-intensive crop per acre of production. Similarly, India’s
northern agricultural regions have been losing water faster than almost any other
arable land on earth (Rodell et al., 2018) while cultivating water-intensive crops
like rice, of which India is the world’s leading exporter. Sekhri (2022) shows that
in this context, policies encouraging trade led directly to substantial groundwater
depletion.

Beyond such examples for a few specific locations, no consensus exists on the
systematic global effects of international trade on long-run water resources and agri-
cultural production. In the scientific literature, prominent work by Dalin, Wada,
Kastner, and Puma (2017) finds that the vast majority of traded agricultural goods
are produced in regions depleting their groundwater resources. In contrast, classic
work by the geographer Tony Allan (Allan, 1998, 2011) argues that “global trade
enables local water security” by allowing production in water-abundant locations
to support consumption in drier regions. Notably, despite the critical role of in-
ternational agricultural markets in this question, existing research has taken place
almost entirely outside of economics. Achieving an understanding of the effects of
global trade and agricultural policies on water resources has been held back both by
the historical lack of granular systematic data on water resources, and by the ab-
sence of analysis using frameworks that incorporate equilibrium behavior, long-run
dynamics, and welfare.

This paper combines a rich collection of global geospatial data with a quan-
titative dynamic spatial equilibrium model to analyze the effects of global trade
and agricultural policies on regional water scarcity and long-run welfare. We start
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by compiling a novel combination of globally comprehensive datasets that convey
a wide range of information about water resources, agricultural activity, and agri-
cultural policy. New datasets originating from hydrology, agronomy, and remote
sensing indicate the availability of ground and surface water, trends in water avail-
ability over time, and the spatial distribution of agricultural production, irrigation,
water consumption, and productivity. Administrative records capture prices, trade
patterns, and the wide array of policy interventions shaping agricultural markets.
To our knowledge, this dataset constitutes the largest collection of global data on
water and agriculture to be used in economics.

We use the data and corresponding scientific literature to establish a set of five
facts about water, agriculture, and trade that frame the subsequent analysis. We
start by showing first that water resources exhibit tremendous spatial heterogeneity
across the globe. Some regions have ample access to groundwater, surface water,
and rainfall, while others have both difficult-to-access and declining volumes of wa-
ter resources, implying a critical potential role for spatial reallocation in mediating
the global costs of water scarcity. Second, we emphasize the literature showing
that agriculture dominates human water use, which motivates the sectoral focus in
this paper. Third, we show that the vast majority—over 93%—of the world’s agri-
cultural production occurs in locations where farmers use water as an open-access
resource with no formal or tradable property rights, underscoring the importance
of understanding the impact of output market and trade policies in the presence of
this ubiquitous input market failure. Fourth, we present direct empirical evidence
from previous work on the substantial effects of agricultural and trade policies on
the evolution of water resources.

The fifth and most important fact we present shows that water-intensive agri-
cultural activity is, on average, highly concentrated in locations with abundant water
resources. For example, the average water intensity of agricultural activity on arable
land in regions in the top global quintiles of groundwater availability and rainfall is
two and five times higher, respectively, than in regions in the bottom quintiles. The
relatively water-intensive use of water-abundant regions is driven both by cropping
a larger proportion of the acreage, and by choosing more water-intensive crops con-
ditional on planting in a given location. Consistent with previous work in particular
regions, the data do also show a small number of regions losing water rapidly while
engaging in highly water-intensive production, such as in parts of California and the
state of Uttarakhand in north India. What is perhaps surprising, and to our knowl-
edge has not been previously established, is that these regions constitute an extreme
exception to the systematic global pattern. Overall, the facts suggest that drier re-
gions of the world preserve their limited water resources through a combination
of producing less water-intensive crops locally and importing more water-intensive
forms of agricultural production. Notably, this finding that specialization follows
factor abundance occurs despite the well-documented distortions both over water as
an input and over the agricultural output markets shaping global trade patterns.
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To fully characterize the role of trade in governing global water resources and
explore policy counterfactuals, we build the first dynamic spatial equilibrium model
of agricultural production, consumption, and trade that incorporates water resources
and includes many crops and countries. In the model, farmers on each parcel of
arable land on earth choose whether to plant crops or to work in the non-agricultural
sector. They sell their output in domestic and foreign markets subject to crop-
specific subsidies, taxes, and bilateral trade costs. The productivity of growing each
crop depends on local soil quality, climate, and the cost of extracting the crop-specific
requirement of water. Extraction costs depend on local water scarcity, and the water
table depth in each local aquifer evolves dynamically depending on natural recharge
and agricultural land use, thus embedding the spatial and temporal externalities
caused by open access to the resource. If aquifers draw down over time, crops
become more difficult to produce, agricultural productivity declines, food prices
rise, and welfare suffers.

We use our extensive global dataset to calibrate the model for a broad range
of countries that account for 99% of the world’s agricultural workers. Farmers in
the model operate across approximately two million granular “fields” of land that
represent heterogeneous local soil and climate endowments, split across over 200
global “aquifers” that reside within and across countries. We do not impose a
steady state in the baseline calibration, such that the model reproduces both levels
and current trends in regional water resources. The model simulations include 22
crops that range from globally traded staples such as wheat, rice, maize, soybeans,
and potatoes, to specialty water-intensive cash crops such as coffee, oil palm, and
bananas, to regional crops critical in many drier low-income regions, such as cassava,
sorghum, millet, barley, and chickpeas. We calibrate some model parameters from
the literature, such as using scientific estimates of crop-specific water intensity of
production, and others to match observed data on land use, agricultural production,
and water resource levels and trends.

We use the calibrated model to run three sets of counterfactuals. First, we eval-
uate the fundamental question about the effects of global agricultural trade on water
resource depletion by considering what the world would look like in its absence—i.e.,
simulating a scenario that imposes autarky on all countries and crops starting in our
baseline year. Second, we quantify the effects of historical realized policy reforms
by simulating the impacts of the global agricultural and trade policy liberalizations
prompted by the Uruguay Round of World Trade Organization negotiations that
occurred from 1986-1994. We consider both the effects of the reforms that were im-
plemented in the decades following the signing of the bill by 123 nations in 1994, as
well as the effects of hypothetical further changes that eliminate remaining distor-
tionary agricultural policies across the world. Finally, in future drafts of the paper
we will consider the domestic and global water resource and welfare implications
of stylized versions of two observed unilateral country level policies: an export ban
on rice in India, a critical food exporter that regularly uses export bans to insulate
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domestic staple crop prices from global supply shocks, and an import substitution
strategy characterized by import restrictions and domestic agricultural subsidies in
food importing countries such as Egypt and Turkey.

The paper has three key findings. First, we find that existing global trade
dramatically reduces aggregate global land and water use, preventing substantial
dynamic welfare losses from water depletion. Global cropped acreage nearly doubles
in autarky in order for all countries to meet domestic demand in the absence of
the efficiency gains from trade, which channels agricultural activity toward its most
productive global locations. The worldwide share of arable land that is cropped goes
from about one-third in the baseline, which closely matches the data, to nearly two-
thirds in autarky. To our knowledge, these represent the first quantitative estimates
of the effects of global trade on agricultural land use, which could have implications
for other environmental issues beyond the scope of this paper.

Autarky also raises global agricultural water use by about 60% in the initial
period. This sharp increase in global extraction depletes global water resources sub-
stantially over time. Average water table depth across the world’s aquifers is stable
over time in the baseline simulation, which matches the data, but falls by about
27% in the first 30 years of autarky as extraction persistently outstrips recharge.
The decline in global freshwater availability in autarky causes considerable welfare
losses. As water tables fall, crop yields decline, food prices rise, and production
in the outside sector falls as agriculture commands a greater share of productive
resources. We calculate that, when normalizing welfare in the initial period to its
baseline value to net out the static gains from trade, global welfare in autarky falls
by about an additional 2.2% after 30 years due to water resource depletion. Thus,
we estimate that the previously unmeasured dynamic water resource gains from
trade are of the same order of magnitude as traditional measures of the global static
gains from trade (Arkolakis, Costinot, and Rodŕıguez-Clare, 2012).1

The second key finding is that water-scarce regions would suffer the worst long-
run water depletion and welfare losses in the absence of global agricultural trade.
The 30-year decline in water tables in autarky is over three times larger for aquifers
initially at the 90th percentile of depth than for the global average. These water-
scarce locations primarily consist of food-importing countries, which require the
largest increases in cropped acreage and water use to sustain domestic consump-
tion in the absence of trade. For these regions with little rainfall and low water
tables, the existence of trade preserves their long-run access to water and prevents
substantial welfare losses—as much as 10–15% of initial consumption—from water
depletion over time. Consistent with previous empirical work (Sekhri, 2022) and
circumstantial evidence, the model simulations do show that imposing autarky re-
verses the trend of declining water resources in a small number of rapidly depleting
food exporting regions, including California’s Central Valley and Northern India,

1Note that the welfare calculations in this draft of the paper remain preliminary, and are subject
to change.
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which stand out as exceptions in the global distribution of water changes under au-
tarky. In India, welfare is declining over time in the baseline as it depletes its water
resources, but is dynamically stable in autarky when it can no longer deplete its
water stocks to export water-intensive products. For the overwhelming majority of
the world, however, we find that trade in agriculture allocates water-intensive pro-
duction to water-abundant locations, dramatically increasing the spatial efficiency
of production and preserving long-run water availability.

It is worth noting that the strength with which specialization in water-intensive
agriculture follows the resource’s abundance, and the degree to which trade prevents
long-run depletion, is perhaps surprising given not only the prominent examples of
trade-induced water declines in California and India, but also the pervasive market
failures in procuring water as an input. If there are no property rights, no markets,
and no market prices for the vast majority of producers using this input, what is the
mechanism by which its relative abundance maps into specialization? We show that
the economic explanation for this finding is that water scarcity directly governs its
private extraction cost. In calibrating the model, we infer the heterogeneous costs
of extraction in each aquifer from the revealed preference of farmers in the data
choosing how water-intensively to use their land. We show that, on average, input
costs for water are substantially higher in locations with lower water tables and
less rainfall. Thus, despite the lack of formal markets or tradable property rights,
water’s effective input price does, partially, reflect its scarcity. In this setting, while
spatial and temporal externalities abound, the natural environment partially stands
in for functioning input markets by raising the marginal cost of procurement where
water is scarce.

The third key finding is that while existing trade generally productively real-
locates water use across space, the predominance of input and output distortions
implies that specific agricultural policy liberalizations can have the opposite effect
and exacerbate depletion and lower welfare. In the counterfactuals we consider, we
find that the Uruguay Round of wto negotiations, the largest historic liberalization
of agricultural markets to date, led global agriculture to, on average, reallocate from
water-abundant to water-scarce countries, with corresponding implications for long-
run water availability and welfare. When agriculture became broadly subject to
wto rules, many wealthier, water-abundant countries substantially reduced domes-
tic support provided to the agricultural sector, while many lower-income countries
removed disincentives to agriculture that were related to import substitution policies
designed to promote industrialization (Anderson, Rausser, and Swinnen, 2013).

Our model simulations show that these policy reforms reduced water use in
many water-abundant regions, such as in Western Europe, and increased it in many
scarce locations, such as in parts of Sub-Saharan Africa. In the long-run, these
reforms appear to have slightly exacerbated depletion on average across the world’s
aquifers, and especially so in a large number of relatively dry countries. In contrast,
we show that if remaining domestic agricultural market distortions were removed,
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nearly all of which subsidize agricultural production, depletion risks would decrease
slightly both globally and in most dry locations. In general, the results suggest that
the long-run water implications of agricultural and trade policy reforms can vary
substantially across cases, and that reducing output market distortions need not be
beneficial in the long-run in this setting.

This paper builds on related work across several literatures within and beyond
economics. In the literature on the economics of water, most existing papers focus
on the efficacy of input market reforms and related policies that take place in a
single location, such as California, India, or southeastern Australia (Ayres, Meng,
and Plantinga, 2021; Bruno and Jessoe, 2021; Ryan and Sudarshan, 2021; Rafey,
2023). A small number of empirical papers consider the role of international trade
in agriculture, including Carleton (2021), which estimates the impact of agricultural
and trade policies on trends in water resources, and Sekhri (2022), which investigates
trade promotion and groundwater depletion in northern India. The paper with the
most relevant empirical work to the facts presented here is Debaere (2014), which
uses country-level data to show that water-intensive exports correlate with water-
abundance, though less so than is observed for other inputs.

To our knowledge, this paper is the first quantitative spatial analysis of the al-
location of global water resources. This work builds on a growing recent economics
literature at the intersection of trade, spatial, and the environment, which is sum-
marized in a review article by Copeland, Shapiro, and Taylor (2022). The model in
this paper builds most closely on Costinot, Donaldson, and Smith (2016), though
we add water resources and dynamics. Most papers in the spatial environmental
literature focus on climate change and air pollution, but a small number consider
natural resources in the context of forests. Hsiao (2021) investigates the effects of
import tariffs on deforestation for palm oil production in Indonesia and Malaysia,
and Domı́nguez-Iino (2021) considers the land use and deforestation implications
of market power in agricultural supply chains in South America. The most sim-
ilar work to this paper is a new paper by Farrokhi, Kang, Pellegrina, and Sotelo
(2023), which uses a global dynamic spatial equilibrium model to study the effects
of agricultural trade on deforestation. The context of forests differs from water in a
number of critical ways, including most notably that the CO2 externality is global
rather than local, and the marginal cost of extraction varies little across space.

As mentioned above, this paper also relates to an older theoretical literature on
trade and natural resources, and a number of papers on “virtual water trade” pub-
lished in scientific journals. In economics, Chichilnisky (1994) most prominently
uses a simple two country model to make the qualitative point that the welfare
effects from trade liberalization are ambiguous in a setting with distorted input
markets for natural resources. In the natural sciences, a number of papers consider
the implications of “virtual water trade” for a wide range of topics such as ground-
water depletion (Dalin et al., 2017), inequality across countries (Carr, Seekell, and
D’Odorico, 2015), and climate change (Konar et al., 2013). Since these papers

6



do not contain economic models of supply, demand, and trade, however, they do
not quantify counterfactual policies, equilibrium reallocation, long-run dynamics, or
welfare.

The paper proceeds as follows. Section 2 uses a wide array of geospatial data
to establish a set of stylized facts that frame the analysis. Section 3 lays out the
model, and Section 4 shows how we calibrate it to match the data. Section 5 shows
results from the policy counterfactuals, and Section 6 concludes.

2 Stylized facts

We assemble a wide array of geospatial datasets to create what constitutes, to our
knowledge, the largest collection of global data on water and agriculture yet to
be used in economics. This compilation of 18 distinct datasets includes data on
water resources and on agricultural land use, production, productivity, and policy
and is composed of over five billion observations. It is detailed in Appendix A.
Here, we bring these data together with a synthesis of the relevant scientific and
institutional context to establish five key facts about water and agriculture that
frame the quantitative model analysis to follow.

Fact 1: Water resources exhibit tremendous spatial heterogeneity

We start by summarizing global data on water resources. Figure 1 shows the global
distribution of average annual rainfall, groundwater table depth, and trends in total
water storage across all arable land on earth. The maps show enormous variation
in both the levels and trends of water available in each location.

Annual average rainfall varies by almost two orders of magnitude across the
world’s land that is suitable for crop production. Using standard gridded climate
data from Sheffield, Goteti, and Wood (2006), we estimate that the median parcel
of global arable land receives 7,021 cubic meters per hectare (m3/ha) of rainfall per
year, and the 1st to 99th percentile ranges from 44 to 33,208 m3/ha. For context, the
most water-intensive staple crop, rice, requires about 8,790 m3/ha of water per year
on average, while the least water-intensive staple, millet, requires just 4,300 m3/ha.
Less than 42% of the world’s arable land receives enough rainfall to supply full
coverage of rice acreage without drawing down the stock of water in steady state.
In contrast, the driest 31% of global arable land receives less rainfall than is required
even to cover all acreage with millet.2 To be sure, these proportions do not represent
a binding limit on the share of regions that can grow each of these crops since
farmers can plant on a subset of acreage or irrigate their crops from existing stocks

2These and related statements are highly conservative estimates due to the presence of water
runoff. When irrigation and/or rainfall water is applied to an agricultural area, some fraction of
that water is used productively by the crop, but a substantial amount of it is lost to runoff. No
comprehensive estimates of runoff rates exist, but accounting for runoff would imply that fewer
regions of the globe have sufficient rainfall to supply the most water-intensive crops.
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of surface or groundwater, but average water consumption by crop provides a useful
benchmark for contextualizing global rainfall totals.

Existing stocks of groundwater show similarly sharp heterogeneity, as revealed
by high-resolution gridded estimates of groundwater table depth assembled by com-
bining a hydrologic model with over 1.6 million well observations (Fan, Li, and
Miguez-Macho, 2013). In addition to the 15% of the world’s surface area that are
covered by local bodies of surface water (e.g. small lakes, rivers, and wetlands) that
can be used for irrigation, 8% of arable land area has easily accessible groundwater
within one meter of the earth’s surface. On the other hand, 64% of the world’s
arable land exists in locations with groundwater deeper than eight meters from the
earth’s surface, a cutoff below which irrigation extraction costs become discontinu-
ously more expensive (Sekhri, 2014). Note that while these data identify only the
top of the water table, this information is what determines the costs of extracting
water for farmers, as we detail when developing the quantitative model in Section 3.

A dynamic measure of trends in total water storage also varies widely across
the world’s arable land, previewing future availability if current patterns continue.
We obtain estimates of changes in total water storage from the Gravity Recovery
and Climate Experiment (grace). This satellite-based measure quantifies changes
over time in all water in a region, including both groundwater and surface water,
at a ∼1 degree resolution and with monthly frequency (see Appendix A for details).
In total, over the satellite record of 2003–2016, just over 50% of the world’s arable
land was losing water, while the other half was gaining water. For instance, the
southwestern U.S., the Middle East, and northern India are all losing water, while
western Europe, eastern Australia, and southwestern Africa are all gaining.

It is worth noting that the magnitudes of these trends in total water storage
are rather modest. The 1st to 99th percentile of arable land ranges from losing
224 m3/ha to gaining 188 m3/ha. For context, median global rainfall on arable land
is about 7,021 m3/ha. Thus, the data imply that, on net, the time trends of water
available in each location are small relative to the gross flows of rainfall and water
consumption in agriculture.

In general, heterogeneity in input abundance across locations governs the strength
of comparative advantage and the potential gains from trade. Given the consider-
able variation in the static and dynamic measures of water availability across the
world, the data suggest a strong role for the spatial allocation of production in
water-intensive tradable goods in maximizing the present and future value of the
world’s water resources.

Fact 2: Agriculture dominates global human water consumption

Agricultural production accounts for approximately 70% of global water withdrawals
by humans, including withdrawals from surface, ground, and soil for use in industrial
production, energy generation, and manufacturing (Dubois et al., 2011). Agricul-
ture is responsible for an even larger share of the water actually consumed by human
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activity, however, because agricultural crops evapotranspire a large share of applied
or precipitated water, such that it is lost to the local environment. In contrast, other
water-extracting activities, like power plant cooling, withdraw significant quantities
of water, but immediately return them to streams, aquifers, and soils. Reflecting
this, leading scientific evidence leveraging hydrologic and agronomic modeling in
combination with detailed spatial data on climate, soils, and agricultural practices
indicates that 92% of global consumptive water use by humans is dedicated to agri-
cultural production (Hoekstra and Mekonnen, 2012; d’Odorico et al., 2019).3 In
contrast, industrial production accounts for only 4.4% and domestic water supply
for direct commercial and residential use for just 3.6%.

A significant amount of this water consumption is implicitly traded through the
global agricultural market. Hoekstra and Mekonnen (2012) and Carr, D’Odorico,
Laio, and Ridolfi (2013) estimate that agricultural goods traded across country
borders account for 20–25% of global water consumption. Relatedly, Dalin et al.
(2017) calculate that 11% of groundwater extracted in excess of natural recharge
is embedded in traded agricultural products. Thus, the water used to produce
the consumption of the average person in a given country can differ substantially
from the per capita domestic water use in production. For instance, Hoekstra and
Mekonnen (2012) estimate that over 70% of implied water consumption is embedded
in imported products for consumers in several Middle Eastern countries, including
Lebanon, Yemen, Israel, Jordan, and Kuwait. Overall, these findings suggest that
analyzing the allocation of global water supplies requires a strong focus on agricul-
tural markets and a critical role for international trade.

Fact 3: Local markets with tradable water rights rarely exist

Water is a classic example of a common pool resource in which open access to ex-
traction creates externalities (Libecap, 2008). When property rights are not clearly
defined and farmers draw down the local stock of water, they raise the cost of ex-
traction for other farmers with access to the resource both in the present and future.
Thus, the social costs of using water exceed the private costs. Furthermore, even
when property rights are defined, they may be allocated on the basis of historical
use or other institutional arrangements without a clear market-based mechanism for
allocating the resource to its highest value uses. Recent research in the U.S. and
Australia shows that the implementation of water markets generates large economic
benefits by allowing water to flow to those uses with the highest value, reducing
the total extraction necessary to achieve a given level of output (Ayres, Meng, and
Plantinga, 2021; Bruno and Jessoe, 2021; Rafey, 2023).

Despite the theoretically and empirically documented benefits of tradable prop-
erty rights for water, the existence of such markets remains exceedingly rare. We
conduct an extensive review of the global status of water property rights, and find

3See Appendix A for details on how these estimates are constructed in the agronomic literature.
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that at least 94% of the world’s agricultural output occurs in regions with no formal
mechanisms for farmers to trade water (Appendix Figure C.1). Formally estab-
lished tradable property rights for water exist in Australia, Chile, Mexico, Spain,
South Africa, Oman, and a number of states in the western U.S.4 Taken together,
these regions account for about 6% of the world’s agricultural production value un-
der a conservative estimate that assumes these water markets cover all agricultural
activity in a jurisdiction (which is not true in nearly all cases). Some additional
water trading occurs outside established formal markets in parts of India, Pakistan,
and China, though without clear mechanisms to resolve the open access externality
(Saleth, 2004; Zhang, Wang, Huang, and Rozelle, 2008; Easter, Rosegrant, and Di-
nar, 1999).5 On the other hand, some locations, such as India, have implemented
rationing schemes that reduce overextraction without achieving gains in allocative
efficiency (Ryan and Sudarshan, 2021).

Even in those limited locations that have established formal property rights,
implementation challenges are ubiquitous. In many regions, transaction costs remain
high enough that little trade occurs in practice. While the volume of water traded
during droughts accounts for over 20% of usage in Australia and Chile, market
trading volumes constitute only 5% of extraction in Spain and less than 1% in
South Africa (Grafton et al., 2011).6 Debaere et al. (2014) and Easter, Rosegrant,
and Dinar (1999) document the wide array of institutional challenges that face
even the best efforts to establish successful local water markets, which have been
implemented with varying degrees of success across the locations in which they exist.

Overall, our review of the global institutional context suggests that the market
failures affecting input markets for water remain broadly intractable in most places.
Research suggests that a few local water markets have yielded large benefits, but the
widespread implementation of such programs remains elusive. If tradable property
rights schemes in which the price of water reflects its social value could be success-
fully scaled up across the world, analyzing challenges associated with water scarcity
at a local scale would be sufficient. The first best policy in the model presented in
Section 3 would be to eliminate both input side market failures and all distortions
affecting output markets. As long as local property rights market failures remain
ubiquitous, however, this paper makes the case that the global spatial allocation of

4Other states with formal water markets for farmers include Arizona, California, Colorado,
Idaho, Montana, Nevada, New Mexico, Oregon, Texas, Utah, Washington, and Wyoming (Griffin
and Characklis, 2002; Phillips and Teng, 2020; Schwabe, Nemati, Landry, and Zimmerman, 2020).
For more information on the other water markets, see Easter and Huang (2014) and Grafton,
Libecap, McGlennon, Landry, and O’Brien (2011) for broad global overviews, Donoso (2013) for
more details on Chile, Hearne and Trava (1997) and Kloezen (1998) on Mexico, Palomo-Hierro,
Gómez-Limón, and Riesgo (2015) on Spain, and Young (2013) on Australia.

5China has also developed a national China Water Exchange in which regional public authorities
can trade water amongst themselves, and smaller pilot programs in six provinces that allow for
farmer-to-farmer water exchange (Wang and Yang, 2018).

6Based on similar measurements, Rafey (2023) estimates that traded water rights account for
a maximum of 1% of the world’s freshwater withdrawals.
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water-intensive production plays a key role in mediating their welfare effects.

Fact 4: Agricultural policy plays a critical role in water use

An expansive literature in agricultural economics documents the critical role that
crop subsidies, taxes, tariffs, and other price shocks play in driving farmer decisions,
such as land use, and farm outcomes, such as supply and productivity (e.g., Roberts
and Schlenker, 2013; Hendricks, Smith, and Sumner, 2014; Scott, 2014; Hendricks,
Smith, and Villoria, 2018). Estimates suggesting that agricultural policy plays an
important role in driving crop production imply that policy also meaningfully affects
water use, and previous work by Carleton (2021) quantifies this link directly. That
paper measures the global impact of government crop price interventions—measured
with an aggregate metric capturing the wedge between distorted and counterfactual
undistorted prices called the “nominal rate of assistance” (nra, detailed in Ap-
pendix A)—on ∆tws using panel regressions that control for regional time fixed
effects and a vector of time-varying climate controls. The analysis finds large ef-
fects of agricultural subsidies on water storage. On land with cropped area, each
10 percentage point increase in net agricultural subsidy changes the annual trend
in total water storage by about 45 m3/ha, approximately equal to moving from the
median global parcel of arable land to the 25th or 75th percentile. Similarly, Sekhri
(2022) finds that Indian policies that promote agricultural trade have large negative
consequences for groundwater reserves.

These estimates suggest that even modest changes in agricultural policy can
play a critical role in shaping the evolution of water availability over time. Such agri-
cultural market interventions are ubiquitous around the world (Anderson, Rausser,
and Swinnen, 2013), yet the degree to which existing policy, and the current dis-
tribution of agricultural activity, resembles the optimal allocation of global water
resources remains undetermined.

Fact 5: Specialization in water-intensive crops follows water abundance—
with important exceptions

If global water use were efficiently allocated, we should expect water-intensive pro-
duction to disproportionately occur in water-abundant locations. This prediction
follows from standard trade theory, such as the Heckscher-Ohlin model, in which
relative factor abundance drives comparative advantage. In our dynamic setting,
places with more water resources can also sustain more water-intensive crops in the
long-run without drawing down their stocks of water. Thus, while water is only one
of many inputs that govern crop suitability (e.g., soil quality, temperature, precip-
itation) and we should not expect water availability to explain all the variation in
global land use, an efficient allocation of global agriculture is likely to be broadly
marked by water-intensive crops grown in water-abundant locations.
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We descriptively evaluate this hypothesis by using the spatial data described
in Appendix A to examine the global relationship between the water intensity of
land use and water availability. We start by calculating a simple index of the water
intensity of land use across all crops. To do so, we use the scientific estimates
from Mekonnen and Hoekstra (2011) of the average global water intensity of each
crop, denominated in units cubic meters of water used per acre planted for each
crop. Using these estimates in conjunction with data from Monfreda, Ramankutty,
and Foley (2008) on acreage allocated to each crop, we calculate the acre-weighted
average water intensity of land use in cubic meters per hectare for each parcel of
global arable land. This calculation covers 128 crops that account for over 88%
of total global planted acreage. Note that we assume that pasture land entails no
human water use in this exercise, such that the measure of water-intensive land use
also accounts for the extensive margin of whether to plant crops at all. We then
show how this index water intensity of arable land correlates spatially with each of
the three main measures of water resources described above: rainfall, groundwater
table depth, and changes in total water storage (∆tws).

Figure 2 shows the results. Maps on the left overlay water intensity of arable
land with each of the three water availability measures, while scatter plots on the
right show average water intensity of land use by decile of water availability. The
results suggest that water-intensive agricultural production strongly clusters in those
regions with high water tables and ample rainfall. The maps in panels (a) and (c)
indicate that most regions of low water abundance also exhibit very low agricultural
water use (regions in grey, such as the western U.S., much of Australia, and global
deserts), while regions with ample water resources plant highly water-intensive crops
(regions in yellow, such as southeast Asia, the midwestern U.S., and Amazonia).
Scatterplots in panels (b) and (d) show that the average water intensity of land
use increases nearly monotonically across deciles of both groundwater access and
long-run average rainfall. On average, arable regions in the highest quintile of global
groundwater tables have production that is more than three times as water-intensive
as that of the lowest quintile. Even more strikingly, the rainiest quintile of places
in the world use nine times more water per acre of arable land than the least rainy
quintile.

This pattern of more water-intensive land use in wetter regions is driven both
by allocating more arable land to crops, and by choosing more water-intensive crops
conditional on planting. When restricting the analysis to cropped area, the top
quintile of groundwater and rainfall regions choose crops that use about 25% and
100% more water per acre than the bottom quintile regions, respectively. Thus, these
cross-sectional measures of land use and water availability suggest a strong role for
resource abundance driving comparative advantage and patterns of specialization.

The correlation between water-intensive land use and the dynamic measure of
water availability—trends in total water storage—shows a very different pattern in
Figure 2, panels (e) and (f). In contrast to the static measures of groundwater
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and rainfall in which water-intensive production is highly concentrated in water-
abundant regions, panels (e) and (f) show that the regions in the world losing water
most rapidly in the period from 2003–2016 (such as northern India, Turkey, and
northeastern China) have the highest water intensity of production. While the av-
erage acre of arable land in the world uses about 2400 m3/ha of water, the average
acre in the bottom decile of ∆tws uses over 3000 m3/ha. Even more dramatically,
the average acre in the bottom 1% of the ∆tws distribution uses nearly 3500 m3/ha
of water, almost 42% higher than the world average. This result aggregates over
highly heterogeneous patterns across water intensive crops. For example, rice is
disproportionately planted in the world’s wettest regions and is exceedingly rare in
the world’s driest regions (Appendix Figure C.2(a)). Conversely, almonds, among
the most water-intensive specialty crops, are primarily grown in dry places, con-
sistent with the aggregate patterns shown in Figure 2. Thus, while the first four
panels of Figure 2 show that water-intensive production is concentrated in regions
that are currently water-abundant, the last two suggest that some isolated locations
planting water-intensive crops could be at risk of future depletion if current trends
continue. However, the concurrence of water-intensive production and rapid water
loss is restricted to a small number of regions, highlighted in bright red on the map
in panel (e).

To take a particularly extreme example, the Indian regions in the bottom 1% of
∆tws, which are primarily located near the capital of New Delhi and in the north-
eastern state of Uttarakhand, have crops planted on over 91% of their arable land
with an average water intensity of land use of over 8700 m3/ha, well over three times
the global average. These India regions are losing water at a rate of over 300 m3/ha
per year, a pace that will reduce the stock of water by the equivalent of annual
average rainfall approximately every two decades. We explore the characteristics of
the places losing water rapidly in much more detail in Carleton, Crews, and Nath
(2024).

While some of the regions losing water rapidly and planting water-intensive
crops might not face a risk of serious water depletion in the near future, we also find
some evidence of water-intensive land use in regions with declining resources and low
existing stocks of groundwater in the cross-sectional data. Figure 3 shows the water
intensity of land use for regions that fall in the bottom quartile of two or more of the
three measures of water availability. Encouragingly, the figure shows that the most
water-intensive land use occurs in regions that do not fall in the bottom quartile of
any of rainfall, groundwater, or ∆tws, and that regions with low rainfall and low
or declining stocks have very low water intensity, consistent with the overall results
in Figure 2. However, this figure also shows that the water intensity of land use
is substantial in those regions that fall in the bottom quartile of both the stock of
groundwater and the trend in total water storage, which comprise about 6.8% of
the world’s arable land.

Overall, we uncover a dominant pattern of water-intensive global agricultural
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production concentrating in presently water-abundant regions, although a small
share of regions have very water-intensive land use and rapidly declining water re-
sources. The findings that the spatial pattern of global agricultural activity reflects
an important role for water as a source of comparative advantage are consistent
with those of Debaere (2014), which analyzed country-level patterns of exported
products and water abundance. This paper is the first to collect the comprehen-
sive global spatial data necessary to examine the relationship between agricultural
activity and several measures of water availability across each granular parcel of
arable land on Earth. In particular, the novel scientific datasets on groundwater
table levels and trends in total water storage convey information about both the
static and dynamic relationship between water and agriculture that have not been
previously documented in the spatial environmental economics literature. The fol-
lowing sections provide further investigation of the welfare and policy implications
of these facts.

3 Model

3.1 Basic environment

Time is discrete and indexed by t ∈ N. The world economy consists of multiple
countries, indexed by i ∈ I ≡ {1, . . . , I}, where consumption and production take
place, and multiple aquifers, indexed by q ∈ Q ≡ {1, . . . , Q}, from which ground-
water is extracted to be used in production.7 Motivated by Fact 3, we assume that
the groundwater in each aquifer is an open access resource, available at the cost of
extraction to any that cultivate the land above that aquifer.

Land is divided into heterogeneous fields, indexed by f ∈ F ≡ {1, . . . , F}, each
of which is within some country i and above some aquifer q.8 Fields comprise a
continuum of heterogeneous parcels, indexed by ω. All fields correspond to 5-arc-
minute grid cells. Because the surface of the earth is curved, grid cells at different
latitudes cover different areas, with larger grid cells closer to the equator. We let
hf denote the area in hectares of field f .

Atomistic laborers in each country can choose to either farm their assigned
parcel, earning the revenue from their harvest, or work for a wage wi producing an
outside good, which we think of as a composite of manufactured goods.9 A farmer
uses his own labor to extract groundwater, which he combines with his land and
remaining time to produce one of multiple crops, indexed by k ∈ K ≡ {1, . . . ,K}.

7Aquifers occur naturally and therefore need not be circumscribed by country borders.
8Accordingly, objects that vary at the field level will not have country- or aquifer-specific

subscripts. When we need to refer to the country in which field f is located, we will write i(f).
Likewise, we will write q(f) for the aquifer below field f .

9Because laborers are assigned to parcels one-to-one, we sometimes use ω as an index of laborers.
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3.1.1 Preferences

In each country i there is a representative household who lives hand-to-mouth and
derives utility in each period from consuming the outside good, Coit, and an agricul-
tural composite, Cit:

Uit = Coit + ζi lnCit. (1)

Since the upper-level utility function in Equation (1) is quasilinear, there are no
income effects. The total demand for crops depends only on a country-specific
demand shifter, ζi ≥ 0.

The agricultural composite, Cit, depends on the consumption of each crop, Ckit,
which itself depends on the consumption of varieties from different origins, Ckjit:

Cit =

[∑
k∈K

(
ζki

)1/κ (
Ckit

)κ−1
κ

] κ
κ−1

(2)

and

Ckit =

∑
j∈I

(
ζkji

)1/σ (
Ckjit

)σ−1
σ

 σ
σ−1

, (3)

where κ > 0 denotes the elasticity of substitution between different crops (e.g., corn
vs. soybeans) and σ > 0 denotes the elasticity of substitution between different
varieties of a given crop (e.g., Chinese vs. American soybeans). The last preference
parameters, ζki ≥ 0 and ζkji ≥ 0, are crop- and crop-origin-specific demand shifters
for country i.

3.1.2 Technology

In the agricultural sector, we assume that the farmer of each parcel ω has access
to a Cobb-Douglas technology for each crop k that combines some fraction of his
labor endowment, Hfk

t (ω), with a Leontief bundle of land, Lfkt (ω), and groundwater,

Gfkt (ω),

Qfkt (ω) = Afk(ω)
[
Hfk
t (ω)

]α
×

[
min

{
Lfkt (ω),

Gfkt (ω)

φk

}]1−α
, (4)

where Afk(ω) ≥ 0 denotes the total factor productivity of parcel ω in field f if
allocated to crop k, and φk measures how much water per unit of land is required to
grow crop k. Without loss, we normalize the size of parcels such that each farmer
is endowed with one unit of land.10

10The main restriction of the technology in Equation (4) is instead that each farm is endowed
with a fixed amount of labor per unit of land. This restriction, along with the Leontief assumption,
is nonetheless consistent with the underlying agronomic models that we will use to calibrate the
parameters of this technology in Section 4. Appendix B.1.5 discusses a generalization to a nested
ces technology.
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Analogous to the approach in Eaton and Kortum (2002), we assume that tfp
is independently drawn for each parcel ω from a field-specific Fréchet distribution:

P
{
Af1(ω) ≤ a1, . . . , AfK(ω) ≤ aK

}
= exp

{
−γ
∑
k∈K

(
ak

Afk

)−θ}
(5)

where θ > 1 measures the extent of technological heterogeneity within each field
and the constant γ is set such that Afk = E[Afk(ω)].11 The term Afk ≥ 0 measures
the comparative and absolute advantage of a field f in producing crop k.

To extract the groundwater needed to irrigate his parcel ω, a farmer must
allocate the remaining fraction 1−Hfk

t (ω) of his labor endowment. Groundwater is
extracted under constant returns to scale in the farmer’s labor only. His productivity
in extraction, however, is assumed to vary with the current depth of the water table
below his parcel. Intuitively, it requires more labor to draw up one cubic meter of
water from an aquifer with a low water table than from one that has its table near
the surface. In particular, let Dqt denote the depth of the water table in aquifer q
in period t. Then the corresponding labor productivity of groundwater extraction
is given by

Awq (Dqt) = ΥqD
−υ
qt . (6)

The extraction productivity conditional on groundwater depth, Υq, is allowed to
vary across aquifers to account for, among other things, differences in pumping
technology and the prevalence of surface water.12

The outside good is produced under constant returns to scale using labor only.
The productivity of each worker in the outside sector, Aoi (ω), is also drawn inde-
pendently from a Fréchet distribution with the same shape parameter θ:

P {Aoi (ω) ≤ ao} = exp

{
−γ
(
ao

Aoi

)−θ}
(7)

where Aoi = E[Aoi (ω)] is the average labor productivity in country i’s outside sec-
tor. Importantly, draws from this distribution are independent of the crop-specific
productivity draws for the parcel the worker would otherwise cultivate.13

11Formally, we set γ ≡ Γ[(θ − 1)/θ]−θ, where Γ(·) denotes the gamma function.
12In principle, the model can directly account for surface water with depth at or near zero. In

practice, however, the spatial scale of a surface water body is typically much smaller than that
of its underlying aquifer. Because we model water tables at the resolution of aquifers, two water
tables that are both near zero depth on average may still be associated with varying shares of
surface water. Variation in the parameters {Υq}, which will be estimated as structural residuals in
Section 4, can account for this.

13This model is observationally equivalent to one in which it is the workers themselves that vary
in farming productivity across parcels within a field. The assumption is then that the idiosyncratic
deviations of a worker’s labor productivity from its task-specific mean are uncorrelated across tasks.
Note, however, that the empirical correlation between those means is left completely unrestricted.
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3.1.3 Market structure and trade costs

All markets are perfectly competitive. The outside good is freely traded and is
used as the numeraire. International trade in crops, on the other hand, is subject
to iceberg trade costs: In order to sell one unit of crop k to the representative
consumer in country j, farmers in country i must ship δkij units. The usual no-
arbitrage condition then requires that the price of crop k produced in country i and
sold in country j be equal to

pkijt = δkijp
k
it, (8)

where pkit denotes the local consumer price of the domestic variety of crop k in
country i.

In addition to trade costs, crops are subject to policy distortions. Each national
government sets a proportional tax τkit for each crop k at each date t.14 With pkit
denoting the price paid by local consumers, the distorted farm gate price received by
farmers is τkitp

k
it. Agricultural policies are funded by lump-sum taxes on the domestic

consumer such that the government’s budget is always balanced.

3.1.4 Evolution of local water resources

The depth of the water table in aquifer q follows the law of motion

Dqt+1 = Dqt + ρq[(1− ψ)Xqt −Rq] (9)

where Xqt is the total amount of groundwater extracted from aquifer q in period t,
Rq is the natural recharge of the aquifer (from rainfall, among other hydrological
mechanisms), ψ is the constant rate of return flow,15 and ρq is an aquifer-specific
conversion factor between volume and depth that depends on the local soil type.

3.2 Competitive equilibrium

In a competitive equilibrium, all consumers maximize their utility, all laborers maxi-
mize their returns, either by cultivating the revenue-maximizing crop on their parcel
or by working in the outside sector, and all markets clear in each period.

3.2.1 Utility maximization

Given Equations (1), (2), (3), and (8), utility maximization by the representative
household in each country requires that

Ckjit = ζi
ζki
(
P kit
)1−κ∑

`∈K ζ
`
i

(
P `it
)1−κ ζkji

(
δkjip

k
jt

)−σ
∑

n∈I ζ
k
ni

(
δknip

k
nt

)1−σ for all i, j ∈ I, k ∈ K, (10)

14If τkit < 1, the policy is a net tax on that commodity; if τkit > 1, it is a net subsidy.
15When water is poured onto a crop, only a fraction of that water is actually absorbed by the

plant. The rest soaks back into the ground and, ultimately, back into the aquifer. The parameter
ψ accounts for the latter fraction.
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where

P kit =

[∑
n∈I

ζkni

(
δknip

k
nt

)1−σ] 1
1−σ

denotes the ces price index associated with crop k in country i at time t.16

3.2.2 Revenue maximization and labor choice

Each laborer chooses to either cultivate his parcel or work in the outside sector. In
the outside sector, profit maximization requires that workers are paid their marginal
products whenever the outside good is produced. Throughout this paper, we assume
that labor endowments are large enough and expenditure shares on agricultural
goods are low enough that the outside good is always produced in all countries.

Should he choose to cultivate his parcel, a farmer selects the crop that maxi-
mizes his revenue. Revenue maximization requires that, for any crop k, the farmer
allocates his labor optimally between extracting groundwater and tending the crop.
One can show that his optimal output of crop k can then be written as

Qfkt (ω) = Afk(ω)M(φk, Dq(f)t), (11)

where M is bounded between zero and one and is decreasing in both the water
intensity of the crop, φk, and the current water table depth, Dq(f)t.

17 Thus, the
farmer’s revenue from growing crop k is

rfkt (ω) = τki(f)tp
k
i(f)tA

fk(ω)M(φk, Dq(f)t).

We assume that laborers know their outside labor productivity and their vectors
of crop-specific productivities before they select in which sector to work in each
period. It follows that a laborer assigned to parcel ω in field f cultivates crop k on
his parcel in period t with probability

πfkt ≡ P
{
rfkt (ω) = max{Aoi(f)(ω), rf1t (ω), . . . , rfKt (ω)}

}
.

Since there is a continuum of parcels within each field, πfkt also corresponds to the
share of parcels on which crop k is cultivated in field f in period t. Because tfp and
labor productivity in the outside sector are both independently distributed Fréchet
with a common shape parameter according to Equations (5) and (7), standard

16See Appendix B.1.1 for derivation.
17See the definition and derivation of M in Appendix B.1.2. Because M is bounded between

zero and one, it can be interpreted as a yield gap relative to Afk(ω), which itself can be interpreted
as the maximum potential yield for crop k on that parcel. This is consistent with our calibration
strategy in Section 4.
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algebra implies that for all f ∈ F and t ∈ N,

πfkt =

(
τki(f)tp

k
i(f)tA

fkM(φk, Dq(f)t)
)θ

(
Aoi(f)

)θ
+ Πf

t

, (12)

where

Πf
t =

∑
`∈K

(
τ `i(f)tp

`
i(f)tA

f`M(φ`, Dq(f)t)
)θ

summarizes the profitability of cultivating field f at time t.18 Looking at the expres-
sion in Equation (12), one sees that the higher a crop’s farm-gate price, τki(f)tp

k
i(f)t,

or mean productivity, Afk, the higher the share of a given field allocated to that
crop. The higher the crop-specific water requirements, φk, however, the lower the
share of that field allocated to crop k. The lower the labor productivity in water
extraction due to a low water table, Dq(f)t, or the higher the mean labor produc-
tivity in the outside sector, Aoi(f), the lower the share of a given field allocated to
any crops, as laborers are more likely to leave their parcels fallow to work in the
outside sector. Finally, the bigger the shape parameter θ, the less heterogeneity
there is across parcels within a field, so the more sensitive farmers are to cross-crop
differences in prices or average productivity.

Let Fi = {f : i(f) = i} denote the set of all fields in country i so that

Qkit =
∑
f∈Fi

∫ hf

0
Qfkt (ω) dω

denotes the total output of crop k in country i. By Equation (11) and the law of
iterated expectations, it must be that

Qkit =
∑
f∈Fi

hfπfkt M(φk, Dq(f)t)E
[
Afk(ω)

∣∣∣rfkt (ω) = max{Aoi(f)(ω), rf1t (ω), . . . , rfKt (ω)}
]
.

Given our distributional assumptions, one can also check that19

E
[
Afk(ω)

∣∣∣rfkt (ω) = max{Aoi(f)(ω), rf1t (ω), . . . , rfKt (ω)}
]

= Afk
(
πfkt

)− 1
θ
.

Because of the endogenous selection of fields into crops, the average productivity
conditional on a crop being produced is strictly greater than the unconditional
average. Combining the two previous expressions with Equation (12), we obtain the
following expression for the supply of crop k in country i:

Qkit =
∑
f∈Fi

hfAfkM(φk, Dq(f)t)
(
πfkt

) θ−1
θ

(13)

for all i ∈ I and k ∈ K.
18See Appendix B.1.3 for derivation.
19See Appendix B.1.4 for derivation.
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3.2.3 Market clearing and feasibility

Since trade in crops is subject to iceberg trade costs, market clearing for all varieties
of all crops requires

Qkit =
∑
j∈I

δkijC
k
ijt for all i ∈ I and k ∈ K. (14)

Let Fq = {f : q(f) = q} denote the set of all fields above aquifer q. Then total
groundwater extracted from aquifer q in period t is

Xqt =
∑
f∈Fq

∑
k∈K

hfxfkt π
fk
t , (15)

where xfkt is optimal water extraction to grow crop k on field f .20

Finally, under the assumption that the outside good is produced in all countries,
the amount of labor demanded by the outside sector adjusts to guarantee labor
market clearing at a unit wage per efficiency unit of labor.

3.2.4 Definition and well-posedness of the competitive equilibrium

A competitive equilibrium in this environment is a feasible path, starting from an
initial vector of groundwater depths, along which consumers maximize their utility,
laborers maximize their returns, and all markets clear.

Definition 1. Given a set of agricultural policies, {τkit}, and an initial vector of
groundwater depths, {Dq0}, a competitive equilibrium is a path of consumption,

{Ckjit}, output, {Qkit}, prices, {pkit}, shares, {πfkt }, groundwater depths, {Dqt}, and
groundwater extractions, {Xqt}, such that Equations (9), (10), (12), (13), (14), and
(15) hold.21

Conditions for the existence and uniqueness of an equilibrium are established
in Appendix B.2. A key feature of the equilibrium is that it can be decomposed
into a sequence of static sub-equilibria connected only through the law of motion
in Equation (9). This is not because laborers are assumed to be myopic ad hoc;
instead, it follows naturally from the fact that the groundwater in each aquifer is
treated as an open access resource, the stock of which is always large relative to the
farms that draw from it.22 Accordingly, laborers do not consider how their choice
of activity—and the water that must be extracted to do said activity—will affect
the water table depth below their parcel in the future. Instead of solving a dynamic

20See the definition and derivation of xfkt in Appendix B.1.2.
21There is nothing about the outside sector in this definition because that sector acts like a resid-

ual claimant on the resources of the economy once agricultural markets clear. See Appendix B.2.4
for discussion.

22That the representative consumers are assumed to be hand-to-mouth is also necessary.
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program, then, each laborer just solves a sequence of static problems. This is what
makes estimation feasible at the fine spatial scales we have in our data, which we
turn to next.23

4 Estimation

To simulate the model described in Section 3, we require estimates of a host of
parameters governing the demand, supply, and hydrology blocks of the model. We
cover each in turn. But, before doing so, we briefly describe the data we use and
the sample restrictions that we impose on the inputs to our estimation procedure.
Details on the datasets used can be found in Appendix A. We conclude by checking
the model’s fit of targeted and untargeted moments.

4.1 Data and sample selection

We choose 2009 as the base year for our analysis because it is the midpoint of the
period covered by the grace satellite data and the earliest year that postdates all
groundwater table depths reported in Fan, Li, and Miguez-Macho (2013). It is also
the most recent year for which data on agricultural output, land use, prices, and
trade flows were all available from the faostat program at the fao.

To construct our sample, we select 52 countries (i ∈ I) that account for 94% of
total gdp, 97% of total agricultural production value, and 99% of total agricultural
laborers (see Figure 4a).24 Within these countries, we model land use at the reso-
lution of 5 arc-minute grid cells to match the fao’s Global Agro-Ecological Zones
(gaez) dataset, which contains potential yields for 38 crops using a spatially-explicit
agronomic model. We restrict our attention to arable land, which leaves us with
roughly 1.9 million fields (f ∈ F). From the set of crops in gaez, we select 22 crops
(k ∈ K) that account for 56% of total agricultural production and 59% of total water
use. Our set of crops, shown in Figure 4c, includes major staples such as wheat,
rice, maize, soybeans, and potatoes, a small number of water-intensive cash crops
such as coffee and oil palm, and regional crops critical in many drier low-income
regions, such as cassava, sorghum, millet, barley, and chickpeas. Importantly, the
selected crops span a wide range of water intensities, from about 3,000 m3/ha for
yams to about 21,000 m3/ha for bananas.

23Dynamic spatial models are notoriously hard to solve (Rossi-Hansberg, 2019). The framework
developed in Desmet, Nagy, and Rossi-Hansberg (2018) has recently been put to great use tackling
environmental questions (see, e.g., Desmet, Kopp, Kulp, Nagy, Oppenheimer, Rossi-Hansberg, and
Strauss, 2021; Cruz and Rossi-Hansberg, 2021). Like ours, that framework relies on assumptions
around agents’ decision problems that ensure those problems are always static. In our case, the
assumption is on the market structure (or lack thereof) for water; in their case, the assumption is
on the returns to investment.

24Coverage shares are reported relative to totals for which data is available from faostat.
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We construct “aquifers” (q ∈ Q) as clusters of contiguous grace grid cells in
the following way. First, following Richey et al. (2015), we overlay a map of the 37
largest global aquifer systems obtained from the Worldwide Hydrogeological Map-
ping and Assessment Program (whymap) and group grace grid cells into clusters
that are at least partially contained within the borders of a single aquifer. Then,
we overlay a map of 180 nasa-delineated water basins and group the remaining
grace grid cells into clusters according to the basin in which they lie. These basins
are defined based on their hydrologic connectivity: within each basin, precipitation
exits from the same location, so we take this as a useful measure of the geographic
extent of the open access externality. This procedure yields 278 clusters that parti-
tion global land area. Finally, we discard all grace grid cells that lie fully outside
the borders of our sample countries. The surviving 205 clusters comprise our set of
aquifers in the model.

4.2 Demand

To estimate the demand block, we closely follow the procedure described in Costinot,
Donaldson, and Smith (2016, §V.A). We proceed in three steps, moving outward
from the innermost nest of the demand system in Equation (10). First, we use data
on prices, pkj , and bilateral trade flows by crop, Ekji, to estimate the elasticity of
substitution σ between different varieties of a given crop and to invert a composite
of the crop-origin-specific demand shifters, ζkji, and trade costs, δkji.

25 Second, we

use the previous estimates to construct price indices at the crop level, P ki , and
combine them with data on crop expenditures, Eki =

∑
j∈I E

k
ji, to estimate the

elasticity of substitution κ between crops and to invert the crop-specific demand
shifters, ζki . Finally, we use data on total crop expenditures, Ei =

∑
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k
i , to

invert the uppermost demand shifters, ζi. Throughout, we will make repeated use
of the identity
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)1−σ , (16)

which defines the value of exports of crop k from country j to country i.

25Prices are measured in current U.S. dollars per ton in 2009 from faostat. Where a U.S. dollar
price was not reported, we converted from local currency units using the exchange rates provided
by the fao. Where no price was reported, we followed Costinot, Donaldson, and Smith (2016) in
imputing the price from the fitted values of a regression of log prices on a country and crop fixed
effect before imposing our sample restrictions. Trade flows are measured in current U.S. dollars
in 2009 from Comtrade via baci. We compute autoconsumption, Ekii, as the difference between
country i’s total production and total exports of crop k.

22



Step 1: Estimating preferences across varieties of a given crop

With 52 countries and 22 crops, some crop-specific bilateral flows are zero. To
rationalize these observations, whenever Ekji = 0 we set ζkji(δ

k
ji)

1−σ = 0. Whenever

Ekji > 0, on the other hand, we take logs and rearrange Equation (16) as

ln

(
Ekji

Eki

)
= mk

i + (1− σ) ln pkj + εkji, (17)

where the first term

mk
i = − ln

[∑
n∈I

ζkni(δ
k
nip

k
n)1−σ

]
will be captured by an importer-crop fixed effect, and the last term εkji ≡ ln[ζkji(δ

k
ji)

1−σ]
is a structural error accounting for trade costs and unobserved variety-specific de-
mand shifters. Without loss of generality, we normalize the demand shifters such
that ∑

j∈I
εkji = 0. (18)

By definition, the equilibrium prices are correlated with the structural errors. We
instrument for prices using the log of the arithmetic average of the gaez potential
yield of crop k across all fields in country j,

Zkj ≡ ln

 1

|Fj |
∑
f∈Fj

Afkj

 .

The instrument Zkj should be correlated with crop prices, pkj , because higher produc-
tivity leads farmers in j to supply more of crop k. We assume that it is uncorrelated
with the demand shifters and trade costs.26

From Equation (17), we estimate σ = 5.32 (with a standard error of 1.34 when
clustered at the crop-importer and crop-exporter levels). The composite parame-
ter ζkji(δ

k
ji)

1−σ is then backed out from the prediction error of the regression while
imposing the normalization in Equation (18). This composite will be sufficient to
construct equilibria—observed and counterfactual—in what follows.

Step 2: Estimating preferences across crops

The second step will look much like the first, but instead of instrumenting for ob-
served prices, we will need to instrument for a price index that we construct our-
selves,

P ki =

∑
j∈I

ζkji(δ
k
jip

k
j )

1−σ

 1
1−σ

,

26Formally, the exclusion restriction is E[Zkj ε
k
ji] = 0.
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using the data and estimates from the previous step. With that index in hand, we
rearrange Equation (16) as

ln

(
Eki
Ei

)
= mi + (1− κ) lnP ki + εki (19)

where the first term

mi = − ln

[∑
`∈K

ζ`i (P
`
i )1−κ

]
will be captured by an importer fixed effect, and the last term εki ≡ ln ζki is a
structural error accounting for unobserved crop-specific demand shifters. Without
loss of generality, we again normalize the demand shifters such that∑

`∈K
ε`i = 0. (20)

The same endogeneity concerns from the first step are present here, so we instrument
for the price index, P ki , with the corresponding arithmetic average of potential yields
for crop k, Zki .

From Equation (19), we estimate κ = 3.80 (with a standard error of 0.29 when
clustered at the importer level). As in the first step, the demand shifter ζki can
then be inverted from the prediction error of the regression while imposing the
normalization in Equation (20).

Step 3: Estimating preferences across sectors

The third step is the easiest: the utility function in Equation (1) implies that ζi = Ei
for all i ∈ I. Across all three steps, our procedure for inverting the demand shifters
has allowed us to match exactly the observed expenditures by each country on crops
from each country in our sample in 2009.

4.3 Supply

To quantify the technologies in Equations (4)–(7), we first recall that the average
potential yield of each field for each crop, Afk, is directly observable in the gaez
data.27 Crucially, this is true for each field f regardless of whether field f is ac-
tually growing crop k. We calibrate the remaining parameters of the agricultural

27We use the baseline, high-input gaez estimates, measured in dry-weight tons per hectare
and converted to fresh-weight tons using the provided conversion table (in order to accord with
faostat production data). gaez reports separate estimates for rainfed and irrigated fields, so we
use observed shares of irrigated land from the Global Map of Irrigation Areas to compute a weighted
average estimate. For rice, gaez reports two varieties (dryland rice and wetland rice), but faostat
only reports the aggregate category, rice. In this case we use the maximum yield over the two
varieties for each field.
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production function in Equation (4) to estimates from the literature. First, we set
1 − α = 0.25 to match the value-added share of land in agricultural production as
computed in Boppart, Kiernan, Krusell, and Malmberg (2019). Second, to quantify
the crop-specific water intensities, φk, we convert the estimates reported by Mekon-
nen and Hoekstra (2011) from cubic meters per ton to cubic meters per hectare
using data on average yields (tons per hectare) from faostat. Third, we set the
elasticity of labor productivity with respect to depth in the pumping technology to
υ = 1 in order to accord with Burlig, Preonas, and Woerman (2021), who specify a
cost function for groundwater extraction that is linear in the vertical distance over
which the water must be lifted.

The remaining technological parameters that need to be estimated are the
extent of within-field heterogeneity in potential yields, θ, each country’s average
labor productivity in the outside sector, Ao ≡ {Aoi }, and each aquifer’s scale of
labor productivity in pumping groundwater, Υ ≡ {Υq}. Again inspired by Costinot,
Donaldson, and Smith (2016), our approach will be to choose values that allow us
to best fit data on crop quantities and land use from faostat as well as water
extraction implied by observed cropped area fractions from Monfreda, Ramankutty,
and Foley (2008).

To that end, we define the predicted output of crop k in country i as a function
of the parameters (θ,Ao,Υ) in a base year,

Qki (θ,A
o,Υ) =

∑
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where the dependence on Υ is through the optimal input bundle, M . Likewise,
we define the predicted land allocated to agriculture in country i and the predicted
water extracted from aquifer q as functions of the same parameters in a base year,
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Note that all three functions encode an equilibrium for a given set of agricultural
policies, τki . In the estimation, we set these to match the nominal rates of assistance
(nras) reported for 2009 by the World Bank dai project.28

Conditional on θ, we will search for the vectors Ao and Υ at which, simultane-
ously, (i) the total amount of land allocated to crops predicted by the model for each

28Nominal rates of assistance are reported in percentage terms, so τki = 1 + NRAk
i . nras

are not reported for every country-crop pair in 2009. Where no nra was reported, we set τki to
the “general” value that summarizes country i’s assistance across agricultural products in 2009, if
available. Where no general value was reported, we set τki = 1. See Appendix A for details.
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country i, Li(θ,A
o,Υ), exactly matches the total amount of land allocated to crops

per faostat, L̂i, expressed in hectares, and (ii) the total amount of water extrac-
tion predicted by the model for each aquifer q, Xq(θ,A

o,Υ), exactly matches the
total amount of water extraction implied by observed cropped area fractions from
Monfreda, Ramankutty, and Foley (2008), π̂fk, and the calibrated water intensity
of each crop,

X̂q =
∑
k∈K

∑
f∈Fq

hfφkπ̂fk,

expressed in cubic meters. Given Ao and Υ, we then search for the value of θ at
which output predicted by the model, Qki (θ,A

o,Υ), best matches observed output
of crop k in country i per faostat, Q̂ki , expressed in fresh-weight tons. Formally,
we use nonlinear least squares (nls) to estimate (θ,Ao,Υ) as the solution of

min
θ,Ao,Υ

∑
i∈I

∑
k∈K

[
lnQki (θ,A

o,Υ)− ln Q̂ki

]2
(21)

subject to

Li(θ,A
o,Υ) = L̂i ∀i ∈ I, (22)

Xq(θ,A
o,Υ) = X̂q ∀q ∈ Q. (23)

In the current draft, we consider only a restricted version of the nls procedure
just described. For now we simply calibrate θ = 2.46 to match the analogous esti-
mate from Costinot, Donaldson, and Smith (2016).29 We then search for the vectors
Ao and Υ that simultaneously minimize the mean squared deviations between the
model predictions and the data for land use and water extraction.30

4.4 Hydrology

We close the quantitative model by specifying the remaining hydrologic parameters
that govern the law of motion in Equation (9). We assume a common return flow
rate across crops and aquifers, ψ = 0.25, which is the central value reported by
Dewandel, Gandolfi, de Condappa, and Ahmed (2008).31 For each aquifer q, its
initial depth, Dq0, is set to the median value across constituent grid cells as reported
in Fan, Li, and Miguez-Macho (2013), expressed in centimeters from the surface. To

29Costinot, Donaldson, and Smith (2016) use a bootstrap procedure, with replacement at the
country level, with 400 replications to estimate the 95 percent confidence interval around their
estimate, which they find to be [2.28, 2.62]. Sotelo (2020), using Peruvian data on crop output
disaggregated at the district level, estimates θ = 2.06.

30Although we can, in principle, exactly satisfy the constraints (22)–(23), doing so requires
adjusting the naive data targets L̂i and X̂q to something attainable by the model with the current
menu of crops, as we describe more below.

31In future versions of the paper, we will account for heterogeneous return flow rates across
crops.
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convert from a change in volume in aquifer q (coming in part from extraction, Xqt)
to a change in depth, Dqt+1−Dqt, we calibrate the parameter ρq, which accounts
for two characteristics of the aquifer. First, and most obviously, its area, which can
be computed easily from the underlying grace grid cells and expressed in squared
meters. Second, its specific yield, which is the space available in the soil for water
mass to be gained or lost. Specific yield depends on the porosity of the soil type,
which itself depends on location and depth.32 Accordingly, we use maps of soil type
from Hengl et al. (2017) and estimates of specific yield by soil type from Loheide,
Butler, and Gorelick (2005) to calibrate ρq.

The final component is the natural recharge rate for each aquifer q, Rq, ex-
pressed in cubic meters. We calibrate recharge in order to match the average annual
change in total water volume for each aquifer implied by grace trends from 2003
to 2016, given what the model implies about water extraction. This captures the
dominant source of recharge—rainfall—but also accounts for runoff between aquifers
or any other unobserved variation in the global hydrological system.

4.5 Goodness of fit

We compare the fit of the model to the data along the most important dimensions for
the simulations that follow: cropped area, which we target at the country level, and
water extraction, which we target at the aquifer level. Figures 5a and 5b show the
percent difference between the model simulation and the data for cropped area and
water extraction, respectively. For cropped area, the model reproduces the global
patterns almost exactly for the great majority of the world, with a simulation error
under 5% for 43 out of 52 countries that cover 71% of the total cropland. Similarly
for water extraction, the simulation error is under 5% for 145 of the 205 aquifers
that cover 67% of the arable land represented in the model. We are attempting
to match all agricultural water use for 115 crops contained in data from Monfreda,
Ramankutty, and Foley (2008) on cropped area and the Mekonnen and Hoekstra
(2011) estimates of water intensity by crop, but there are only 22 crops in the model
simulations, which are constrained by the availability of gaez data on potential
yields, so we do not expect the model to be able to fit perfectly everywhere.

The geographic pattern of the simulation errors shown in Figures 5a and 5b
makes apparent that the model’s misses are heavily concentrated in southeast Asia,
where the simulations consistently underpredict both cropped area and agricultural
water extraction. There are several unique features of this region, which includes
Indonesia, Malaysia, the Philippines, Thailand, Vietnam, and Bangladesh, including
extremely high rates of rainfall totaling several times the global average (Figure 1a)
and the widespread availability of both surface water and easily accessible water
tables close to the surface (Figure 1b).

Most notably, we emphasize that southeast Asia contains extreme outliers in the

32For example, clay is among the least porous types of soil; gravel, among the most porous.
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distribution of water intensities of land use that we target, as shown in Figure 5c.
For most of the land in these regions, the water intensity in the data we target
suggests that the average acre of arable land uses over 10,000 m3/ha. For context,
recall that rice uses 8,790 m3/ha. Thus, matching the data would require the model
to simulate arable land use in which farmers choose to crop 100% of acreage with
a crop that uses more water than the most water-intensive staple crop, which is
clearly infeasible in the model. At the time of this draft, our best understanding is
that the extreme outliers in the land use targets for southeast Asia occur because
many farms in these regions crop the same acreage multiple times in the same year.
Our data include estimates of harvested acreage, but while the same acre can be
harvested more than once in some locations in practice, it only exists once in each
year in the model. So it is possible that the model’s targets are actually impossible
to meet in some locations within this region.

In future drafts of the paper, we plan to make adjustments for how the model
represents potential land use in regions with multiple cropping cycles in each year
by using global spatial data on crop calendars that identify these locations. For
now, we emphasize the map in Figure 5d, which shows that the model reproduces
the qualitative pattern of unusually extreme water intensity of land use in these
countries in southeast Asia even if it does not fully capture the magnitudes of their
agricultural water consumption.

As an additional assessment of how well the model captures patterns of global
water resources, we also examine the calibrated values of the extraction productivity
parameters across aquifers. Recall from Equation (6) that the parameter Υ governs
the labor productivity of water extraction for farmers, conditional on aquifer depth.
We allow this parameter to vary across aquifers because the costs of extraction,
conditional on the water table level, can vary across regions for a number of reasons.
These include the free availability of water through rainfall, the potential for surface
water irrigation that could be less expensive, heterogeneous irrigation technologies
available to farmers, and the local institutions that govern water access. While
not all the determinants of the input costs of water are well measured in the data,
we might expect the Υ values to be correlated with plausibly relevant observable
covariates.

Figure 6 shows raw correlations of Υ with other aquifer characteristics. En-
couragingly, the top-left panel and top right-panel show that, over most of the range
of values represented in the data, both precipitation and the share of area equipped
for irrigation are positively correlated with Υ. A few regions with more extreme
precipitation values have lower extraction productivities, consistent with the agro-
nomic literature that suggests a U-shaped relationship between moisture and crop
productivity. The bottom-left panel also shows that regions with greater nighttime
lights, a proxy for local income, have higher extraction productivities, consistent
with a role for technology. The bottom middle panel shows no relationship between
Υ and our measure of local surface water presence, and the top middle panel shows
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a U-shaped relationship between temperature and Υ, which is again consistent with
relevant estimates in agronomy and agricultural economics.

The covariates shown in Figure 6 are correlated with each other in various
ways, so Table 1 also shows their partial correlations with the effective input costs
of water. The first column shows a regression in which the dependent variable
is the log of Υ, which governs the extraction productivity for the farmer for a
given level of water table depth, and the second column shows results for the log
of the extraction productivity, Awq (Dqt), that also incorporates the actual water
table depth in the initial period. The patterns in the regression are very similar to
those of the raw correlations in Figure 6. The data clearly reveal familiar U-shaped
patterns in precipitation and temperature that imply an optimal level of rainfall
and temperature for water-intensive agriculture. The results also show a positive
role for area equipped with irrigation and nighttime lights in promoting extraction
productivity. The only puzzling result is the lack of relationship between extraction
productivities and the data from Pekel, Cottam, Gorelick, and Belward (2016) on
surface water presence.

Perhaps most notably, the final row of the table shows that extraction costs
vary strongly with groundwater table depth. Recall from Section 4.4 that we infer
Υ to match the data on the water intensity of land use. Recall also the patterns
shown in Figure 2 and Fact 5 of Section 2 that show that the most water-intensive
global land use is in regions with higher water tables and more rainfall. Thus, it is
the revealed preference of the world’s farmers deciding how to allocate their land
from which we infer the extraction productivities. Overall, the parameter estimates
suggest a critical role for the natural environment in governing the input costs of
water, which are much higher in dry locations. These estimates are important for
the counterfactuals that follow both because they help explain the mechanism by
which scarcity can map into comparative advantage and specialization for unpriced
water inputs, and because they quantitatively determine how changes in the water
table over time map into productivity and welfare.

5 Counterfactuals

5.1 Autarky

We start by addressing the overarching question of the general impacts of global
agricultural trade on water depletion and long-run welfare. To do so, we consider
what global agriculture and water resources would look like in the complete ab-
sence of international trade by running a counterfactual scenario in which we set
the iceberg trade costs, δkij , to infinity for all countries and crops. We run each coun-
terfactual forward for 30 years to show the dynamic evolution of water availability
and welfare with and without international trade.

Before examining the spatial distribution of agriculture and water resources
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in a hypothetical world without agricultural trade, it is worth highlighting some
overall global patterns. Figure 7 compares how cropped area, water extraction,
aquifer depth, and welfare evolve in the baseline and in autarky over a 30-year
period starting in the initial year of 2003. The first key result shown in panel (a)
is that global cropped area is nearly 90% higher in autarky than in the baseline.
This reflects the static efficiency gains from trade. When global agriculture can be
produced far from where it is consumed, the most efficient agricultural regions of
the world can disproportionately be used to feed the global population. In autarky,
however, each country must produce enough to meet domestic consumption, even if
doing so requires using less productive land. Thus, global rice and wheat yields are
15% and 4% lower on impact, respectively, in autarky than in the baseline.

Panel (b) of Figure 7 shows that the additional cropland required to meet global
demand in autarky also raises global water extraction by about 60% in the initial
period. We interpret this number as the aggregate water savings that allowing trade
creates by improving the spatial efficiency of production and reducing the land used
for global agriculture. Notably, the autarky increase in global water extraction is
nearly 30 percentage points smaller than the increase in global cropped area. This
is because the model simulations predict that some of the adjustment in response
to countries having to produce all their food domestically would come through the
margin of substituting to less water-intensive crops. Conditional on cropping, the
water intensity of land use is about 15% lower in autarky than in the baseline in the
initial period, as the share of less water-intensive crops in the global consumption
basket grows in the absence of the spatial efficiency gains from trade.

Panel (c) of Figure 7 shows the evolution of average global aquifer depth in the
baseline and in autarky. As discussed in Section 2, global arable land in the data
is evenly split between locations gaining and losing water. We match these existing
trends in water availability exactly in the model calibration, so the blue line in
Figure 7c shows that the baseline mean change in aquifer depth across global arable
land is essentially zero over time. In contrast, global average aquifer depth falls by
over 5 meters after 30 years of autarky, meaning water tables decline by about 27%
of their initial average values that we take from Fan, Li, and Miguez-Macho (2013).
Without trade, much more land and much more water is required to meet global
demand for food, which rapidly depletes the world’s water resources.

Falling water tables in autarky have important implications for the evolution
of global agriculture and for welfare. Panel (d) shows that global welfare is stable
over time in the baseline counterfactual, as there is no average trend in water ta-
bles. In autarky, however, welfare starts falling immediately upon impact, and is
2.2% lower for the world after 30 years. The graph normalizes welfare across the
counterfactuals in the initial period in order to net out the static gains from trade,
so the 2.2% number measures only the dynamic welfare gains from trade that come
through the channel of preserving the world’s water resources over time. This is a
large effect in the context of previous estimates of static welfare gains in the trade
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literature (Arkolakis, Costinot, and Rodŕıguez-Clare, 2012), though we caution that
the welfare estimates in this draft of the paper remain preliminary.

Declining water tables affect welfare through several channels in the model.
When water becomes more difficult to access, agricultural productivity falls, food
prices rise, and production in the outside sector declines as more land and labor
are allocated to producing enough food to meet demand, as shown in Figure 7a.
Global average yields of rice and wheat, which are already 15% and 4% lower in the
first period of autarky due to the less efficient allocation of global land, fall by an
additional 8% and 3% after 30 years of water depletion. In addition, the composition
of consumption also shifts away from water-intensive crops. Panel (b) of Figure 7
shows that global water extraction falls substantially over time in autarky as water
tables fall and farmers respond accordingly to the rising cost of obtaining water.
The average water intensity of cropped land starts 15% lower in autarky as farmers
in dry regions have to grow more food for domestic consumption, and falls further to
30% lower after 30 years as farmers substitute even more away from water-intensive
crops over time. Feeding the world’s population in the absence of trade requires
substituting somewhat away from water-intensive consumption at first, and even
moreso over time as water tables decline.

The spatial distribution of changes in autarky shows that the rise in cropped
area and water extraction has a long right tail that skews heavily towards dry
regions of the world. While extraction rises by 60% upon impact for the world
overall, Figure 8a shows that it increases by as much as 300-600% in a number of
regions, including most of Africa and Australia. As the map implies, the regions in
which cropped area and water extraction increase most tend to be drier than the
global average. Figure 8b shows that the increase in water extraction is over 150%
for regions in the bottom quartile of initial water table depth, and nearly 200% for
regions in the bottom quartile of rainfall, compared to 60% for the world on average.
In contrast, extraction increases by only about 20-25% in regions in the top quartile
of initial depth or rainfall. Some extremely wet food-exporting regions in Southeast
Asia with very water-intensive production in the baseline even see declines in their
water consumption in autarky. The dominant pattern in the baseline equilibrium,
as reflected in Fact 5 from Section 2, is that wetter regions in the world export
water-intensive goods to drier regions, so the scenario where all food is produced
domestically forces water consumption to rise most in the predominantly importing
regions that can least support it.

Figure 9 shows changes in water table depth across the world in the baseline
and in autarky. Recall from Section 4 that the change in depth is a function of not
only water extraction and recharge (which is fixed in each aquifer across years and
counterfactuals), but also of the specific yield, ρ, in each aquifer, which maps changes
in volume to changes in depth based on local soil characteristics. In the baseline,
the arable regions of the world that are depleting most rapidly, such as northwestern
India and California’s Central Valley, project to have their water tables decline by
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about one to three meters over the 30 year horizon. In autarky, the average global
decline is about five meters. For the driest regions at the 90th percentile of water
table depth, the 30-year decline is an enormous 18 meters of depth. Overall, about
16% of the world’s arable land sees their water tables fall by over 10 meters within
thirty years in autarky, a rate of water depletion that far exceeds anything observed
in the existing data.

Figure 10 shows the evolution of groundwater table depth and welfare over
time in two selected example countries, Australia and India. Australia is a major
food-importing region in the baseline, preserving its domestic water resources by
largely relying on other countries for their water-intensive consumption. On aver-
age, its aquifers are not depleting in the baseline, as shown in the blue line of panel
(a). In autarky, however, the red line shows that Australia’s water tables decline
substantially. Panel (b) shows that welfare falls correspondingly over time in au-
tarky, whereas it holds steady in the baseline. The decline in welfare in Australia
is smaller than in some other countries because the agricultural share of gdp is
smaller, though note that the welfare calculations in the paper remain preliminary.

Panel (c) of Figure 10 shows that aquifer depth in the northwestern region of
India is depleting substantially in the baseline simulation, but is stable in autarky.
Patterns elsewhere in India are qualitatively similar, such that panel (d) shows that
welfare declines notably in India in the baseline, and declines somewhat less over
time in autarky. This is consistent with the evidence in Sekhri (2022) that agricul-
tural trade exacerbates depletion in India—a major food exporter. Note as a caveat
to this result that India is one of the small proportion of regions in the world for
which we do not closely match baseline water consumption (see Figure 5). How-
ever, since we underpredict water consumption in India in the simulation relative to
the data, we expect that improving the fit of the model would only strengthen this
pattern of agricultural trade exacerbating, rather than preventing, depletion.

While it is difficult to see visually, the maps in Figures 8a and 9b also show that
the Central Valley of California constitutes a sharp exception to the broad global
pattern of trade preventing water depletion. Much like northern India, this region
of California with export-oriented agriculture and rapid depletion in the baseline
has lower water extraction and a stable trend in its water table in autarky. We
take these counterexamples to the global patterns as an encouraging sign that the
model’s calibration and simulation does not force a result in which trade liberal-
ization prevents water depletion. In fact, the results show that the two prominent
examples in the literature of possible trade-induced local water depletion appear to
be consistent with a dynamic general equilibrium analysis. However, the results also
show that California and India stand in sharp contrast to the overall picture across
the world, in which agricultural trade overwhelmingly serves to prevent rather than
create problems associated with water depletion.
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5.2 Uruguay Round Agricultural Trade Policy Reforms

We now turn from analyzing the general impacts of global trade on water resource
depletion and welfare to considering specific realized and potential policy reforms.
We start by considering the set of trade agreements arising from the Uruguay Round
of World Trade Organization negotiations that concluded in 1994. These agreements
were signed by 123 nations, and together marked the most substantial liberalization
of global agricultural markets observed in history. Prior to the Uruguay Round,
agriculture was largely omitted from the General Agreement on Tariffs and Trade
(gatt) and national governments were heavily leveraging subsidies, import restric-
tions, and foreign exchange market manipulations, among other tools, to distort
agricultural production and trade (Healy, Pearce, and Stockbridge, 1998). The
agreements these countries signed in 1994 induced a sweeping array of reforms that
reduced global agricultural market distortions in most countries.

To investigate the implications of this observed market liberalization on wa-
ter depletion and welfare, we run a counterfactual simulation in which we fix all
country-by-crop Nominal Rates of Assistance (nras; τki from Section 3) to equal
their average values during the period from 1986-1994, the negotiating years of the
Uruguay Round. Comparing this counterfactual to the baseline in which we use
nra values observed in 2009 allows us to contrast the long-run effects of the policy
regimes that existed before and after the reforms were made. In addition, because
many production and trade distortions remain in effect today, we also conduct a
simulation in which we set all nra values to zero. This allows us to evaluate the
effects of removing all remaining policy distortions in global agricultural markets.

Figures 11a and 11b show that these two alternative scenarios lead to very
distinct spatial distributions of reforms. Before the Uruguay Round, wealthy na-
tions were heavily subsidizing agricultural production, while developing economies
relied on import-substitution policies intended to promote industrialization, includ-
ing agricultural export taxes and foreign exchange manipulations that suppressed
agricultural production (Anderson, Rausser, and Swinnen, 2013). Therefore, the
Uruguay Round reforms caused nras to decline in regions like the United States,
Europe, and Australia, but increased nras in many lower and middle-income re-
gions, including India, Brazil, and many parts of Africa (Figure 11a). In contrast,
remaining distortions in agricultural policy consist almost entirely of net subsidies,
such that removing these interventions would reduce production incentives nearly
everywhere (Figure 11b).

The maps in Figure 11c and 11d show the simulated change in global water
extraction by region resulting from the Uruguay Round reforms and the hypothet-
ical elimination of remaining agricultural net subsidies, respectively. As expected
from the pattern of agricultural policy changes, the Uruguay Round reforms reduced
global water use in richer, largely wetter, regions such as western Europe and the
U.S. that reduced their domestic supports to agriculture. In contrast, many devel-
oping countries increased extraction substantially as their reforms largely removed
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disincentives to agricultural production. On net, the simulations suggest that the
Uruguay round of reforms actually increased global water extraction by about 5%.
In largely water-scarce lower-income regions especially, the policy changes raised
consumption relative to recharge, increasing the rate of depletion and causing de-
clines in welfare over time. In contrast, Figure 11d shows that hypothetical further
policy liberalizations that remove remaining agricultural distortions would reduce
global extraction in most regions, by about 5% in total, helping preserve the world’s
water resources and mitigate any dynamic declines in welfare.

Together, these findings underscore the complex and nuanced relationship be-
tween agricultural trade, rates of water depletion, and welfare. While the autarky
counterfactuals overwhelmingly point to substantial economic and environmental
gains from trade along both static and dynamic resource conservation dimensions,
we find that the most historic agricultural market liberalization to date appears to
have exacerbated global water stress and reduced welfare over time. In contrast,
further liberalizations that eliminate remaining distortions would broadly have the
opposite effect. These results, taken together with the spatial patterns showing that
autarky preserves water resources in a small number of rapidly depleting regions,
such as California and northern India, make clear that trade in agricultural goods
need not be globally beneficial for water or welfare. In a setting with ubiquitous
input market failures, it is critical to assess the specific spatial arrangement of any
alternative output policy regimes in order to determine their likely impacts on water
resources and welfare.

6 Conclusion

This paper considers the impact of global agricultural trade policy on regional water
scarcity and long-run welfare. In a setting in which input markets are notoriously
distorted and largely do not exist, it is possible for trade to exacerbate the local
open access resource externality and cause dynamic losses from depletion over time
if poor institutions act as a source of false comparative advantage (Chichilnisky,
1994).

However, we show that in the case of water, the relative physical scarcity of
the resource across locations maps strongly into its effective input price, such that
water-abundant regions do have strong comparative advantage in water-intensive
production despite the widespread lack of functioning markets for the input. Thus,
global agricultural trade allows specialization in water-intensive production to clus-
ter in water-abundant regions, preventing severe global depletion of water resources
in the vast majority of the world, and especially so in dry locations that presently
rely heavily on food imports. The model allows us to introduce and quantify a pre-
viously unmeasured channel of the dynamic resource availability gains from trade
in this context. Despite these broad beneficial effects of global trade for water re-
sources, we also show that trade and agricultural policy liberalizations can have the
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harmful effect of exacerbating depletion in some locations and in the case of some
observed and hypothetical policy reforms, suggesting that the relationship between
trade policy and water resources is nuanced and case-specific.

A natural question is whether the findings about trade preventing depletion
of water resources can be generalized to the cases of other open access natural
resources. Given the mechanism for the primary results in this paper, we conjecture
that a key factor determining the relationship between trade and resource depletion
is whether there exists a physical mechanism for the resource’s scarcity to map into
its marginal cost of extraction. If so, it may be the case that nature can, at least
partially, compensate for nonfunctional input markets in governing the allocation.
If not, it may not be that trade is helpful at all—and indeed could be harmful—for
preserving the long-run availability of the resource. Thus, we might expect to see
very different results for the effects of global trade on the management of forests,
for which the marginal cost of extraction is generally independent of the existing
stock of forests, and the management of fisheries, for which the marginal cost of
extraction depends strongly on the existing local stock of fish.

We conclude with a final suggestion for future research. One policy implication
of the results in this paper is that international trade in agriculture creates con-
siderable benefits through its allocation and preservation of water resources. Yet
policymakers often oppose reforms that reduce barriers to importing food because
of a belief that domestic production is necessary to enhance “food security.” In this
paper, we show an important dimension through which agricultural trade actually
enhances this definition of food security. In the absence of imports from water-
abundant regions, many countries in water-scarce locations would draw down their
water resources substantially enough that domestic agricultural production would
become much more difficult in the long-run, eventually increasing their reliance on
external producers. In the context of these findings, and of the broader recent de-
velopments in the literature on trade, agriculture, and the environment, it may be
worth considering more closely the relationship between trade policy and reliable
long-run access to food.
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Tables and Figures

Figure 1: Summary of Global Data on Water Resources

(a) Average Rainfall (cm/year)

(b) Average Groundwater Table Depth (meters below land surface)

(c) Change in Total Water Storage (cm/year)

Notes: The map in Panel (a) shows average precipitation at 0.25◦×0.25◦resolution using data
from Sheffield, Goteti, and Wood (2006). Panel (b) maps average groundwater measures from Fan,
Li, and Miguez-Macho (2013) at 30 arc-second resolution. Month-by-month changes in total water
storage for equal-area parcels of Earth from the Gravity Recovery and Climate Experiment (grace)
are shown in Panel (c). See Appendix A for more details on the water variable data sources.
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Figure 2: Correlations of Water Intensity of Arable Land Use and Relative Water
Abundance

Notes: Maps show water intensity of arable lands against: (a) total annual rainfall from Sheffield,
Goteti, and Wood (2006); (c) depth to groundwater from Fan, Li, and Miguez-Macho (2013); and
(e) trends in total water storage from the grace satellite. Scatter plots in (b), (d), and (f) show
the average water intensity of arable land for each decile of precipitation, groundwater table depth,
and change in total water storage, respectively. Arable land is defined as land that is cropped or
pastured. The water intensity measures are calculated using data from Mekonnen and Hoekstra
(2011), and water variable data sources are detailed in Appendix A.
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Figure 3: Water Intensity of Arable Land Use in Water-Stressed Regions

Notes: This graph shows the water intensity of arable land use in regions that fall in the bottom
quartile of none, two, or all three of selected water variables: precipitation, groundwater table depth,
and change in total water storage. Arable land is defined as land that is cropped or pastured. The
water intensity measures are calculated using data from Mekonnen and Hoekstra (2011), and the
sources of the water variable data are discussed in Appendix A.
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Figure 4: Selected Sample of Countries, Crops, and Aquifers

(a) 52 countries included in the model

(b) 205 global aquifers included in the model

(c) Water intensity of 22 crops included in the model

Notes: Panel (a) maps the 52 countries included in the quantitative model. Panel (b) maps 278
global aquifers, 205 of which overlap with the 52 countries shown in panel (a) and are included in
the model. Panel (c) shows the water intensity in m3 per hectare of the 22 crops included in the
model. Details on sample selection are provided in Section 4.1.
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Figure 6: Correlations Between Model Parameters Mapping Aquifer Depth to
Extraction Productivity (Υ) and Climate and Economic Covariates
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Notes: Each panel in the above figure plots aquifer-level estimates of the logarithm of Υ, the
parameter that governs the productivity of water extraction conditional on aquifer depth, against
a potential correlate. Variables shown are as follows (left to right, top to bottom): average daily
precipitation (mm), average daily temperature (◦C), area equipped for irrigation (%), nighttime
luminosity (nanowatts per cm2 per steradian), and surface water area (%).
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Table 1: Partial Correlations of Aquifer-Level Covariates, Extraction Productivity
(Awq (Dqt)), and Impact of Depth on Extraction Productivity (Υq)

Dependent Variable

log(Υ) log(Aw
q (Dqt))

Precipitation 0.64** 0.54*
(0.25) (0.28)

Precipitation2 -0.11** -0.08**
(0.03) (0.03)

Temperature 0.26*** 0.17***
(0.04) (0.05)

Temperature2 -0.004*** -0.003*
(0.001) (0.002)

Area irrigated (%) 0.10* 0.10*
(0.05) (0.05)

Nighttime luminosity 0.20*** 0.18**
(0.07) (0.01)

Surface water area (%) -0.02** -0.02*
(0.01) (0.01)

Groundwater depth (m) 0.04***
(0.01)

Notes: Table shows regressions of aquifer-level water extraction productivity, Awq (Dqt), and impact
of depth on extraction productivity, Υ, on the same set of covariates as shown in Figure 6. Equation
6 shows the mapping between groundwater depth, Υ, and extraction productivity. The Υ parameter
captures heterogeneity across aquifers in the effective input costs of water conditional on water
table depth, potentially caused by factors such as rainfall, surface water, irrigation technology,
and institutions. Standard errors are shown in parentheses, and stars denote ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Figure 7: Simulated Impact of Agricultural Trade on Global Agriculture, Water,
and Welfare over Time

(a) Global cropped area (b) Global water extraction

(c) Global average aquifer depth (d) Global welfare

Notes: Each panel shows model simulated output under the baseline calibration (in blue) and a
counterfactual autarky simulation (in red) in which trade costs for all crops and all country pairs
are infinite.

50



Figure 8: Relative Water Extraction Under Autarky - By Initial Water Availability

(a) Global Distribution

(b) Heterogeneity by Initial Water Resource Characteristics

Notes: Map shows the ratio of water extraction under autarky to that under the baseline simula-
tion, at the aquifer level. Ratios above one indicate water extraction rates in autarky that exceed
those simulated under baseline agricultural production and trade.
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Figure 9: Simulated Trends in Water Tables Over Time

(a) Baseline

(b) Autarky

Notes: Map shows the projected 30-year change in water table depth in the baseline simulation in
panel (a) and in the autarky counterfactual in panel (b). Changes in water table depth depend on
water extraction, recharge, and the specific yield of the soil in each region. Calibrated recharge is
held fixed across years and counterfactuals, and Figure 8 shows the ratio of extraction in autarky
versus the baseline.
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Figure 10: Simulated Impact of Agricultural Trade on Water and Welfare in Select
Regions Over Time

(a) Australia: average aquifer depth (b) Australia: welfare

(c) Northwestern India: aquifer depth (d) India: welfare

Notes: Each panel shows model simulated output under the baseline calibration (in blue) and a
counterfactual autarky simulation (in red) in which trade costs for all crops and all country pairs
are infinite. Panels (a) and (b) aggregate all aquifers and fields across Australia, a large importer of
water-intensive crops with low groundwater levels. Panel (c) shows the pattern in the most rapidly
depleting aquifer in India, a large exporter of water-intensive crops, and panel (d) shows welfare in
the aggregate in India, which has a qualitatively similar pattern to the aquifer shown in panel (c)
across the country on average.
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Appendix – For Online Publication

A Data Appendix

A.1 Global hydrological spatial data . . . . . . . . . . . . . . . . . . . . . 55
A.2 Global agricultural spatial data . . . . . . . . . . . . . . . . . . . . . 57
A.3 Global country-level data . . . . . . . . . . . . . . . . . . . . . . . . 59

We compile a wide array of geospatial datasets to assemble what constitutes,
to our knowledge, the largest collection of global data on water and agriculture yet
to be used in economics. The compiled dataset is summarized in Table A.1, and
each component dataset is detailed below.

A.1 Global hydrological spatial data

Our analysis of the spatial allocation of water resources draws primarily on two
scientific datasets that provide information on levels and trends, respectively, of
water availability throughout the world.

Groundwater table depth

We collect globally comprehensive data on a cross-sectional measure of water ta-
ble depth from Fan, Li, and Miguez-Macho (2013).33 This scientific paper begins
by compiling water table depth observations published in government or scientific
sources from over 1.6 million wells located across all six populated continents. The
paper proceeds to create a continuous spatial dataset by interpolating between well
observations using a hydrological model calibrated to detailed spatial data on cli-
mate, geology, elevation, and soil characteristics. Together, the empirical observa-
tions and model simulations are used to produce global estimates of the depth of
the water table in meters from the surface at a 30 arc-second (approximately 1km)
resolution.

This dataset provides estimates of the water available to farmers from both
groundwater and surface water. For farmers who irrigate their crops using ground-
water, well depth plays a critical role in their costs of extraction since it is costlier to
pump water from further underground.34 Other farmers irrigate crops from surface
water, which is typically lower cost where available. Approximately 37% of global

33Note that we use the updated version of the dataset accessed here, which corrects for some
known errors in the 2013 version.

34See Hendricks and Peterson (2012) for analysis of how extraction costs vary with well depth.
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irrigated land relies on groundwater, and 63% on surface water.35 The data from
the hydrological model simulations in Fan, Li, and Miguez-Macho (2013) provides
information on the presence of surface water by marking these areas with water
table depth readings of less than zero. The paper estimates that 15% of global land
area is covered by lakes, rivers, and inundated wetlands.36

The data on both water table depth and surface water availability play a critical
role in the calibration of the costs of water extraction described in Section 4 of the
main text. The drawback of this dataset, however, is that it contains only cross-
sectional information on water availability, limiting its ability to inform about water
resource dynamics that exist in the world and are represented in the model.37

Trends in total water availability

The second key water dataset in this paper contains globally gridded information
on changes in the total volume of local water resources over the period from 2003
through 2016.38 The data are collected by the Gravity Recovery and Climate Ex-
periment (grace) partnership between the U.S. National Aeronautics and Space
Administration (nasa) and the German Deutsche Forschungsanstalt für Luft und
Raumfahrt (dlr). The scientific procedure underlying these data exploits satellite
measurements of the gravitational force exerted by each location on Earth to infer
its change in mass, and consequently total water storage, over time. Tapley, Bet-
tadpur, Ries, Thompson, and Watkins (2004), among many other papers, show that
the time-series changes in regional mass uncovered by grace consist primarily of
changes in local water content.

The grace data provide month-by-month changes in total water storage (∆tws),
measured in centimeters of equivalent water height, for 41,168 equal-area parcels of
the Earth, which measure 1◦×1◦ at the equator.39 Because the data infer the change
in all water contained in a given region, they represent the combined evolution of
groundwater, surface water, soil moisture, snowpack, and ice over time (though the
latter two components are less relevant over the arable lands that are the focus of
this paper). These data have been used widely in the scientific literature to study
topics ranging from detecting changing water availability (Boser et al., 2024; Rodell

35This statistic comes from our calculations using data from the Monthly Irrigated and Rainfed
Crop Areas (mirca2000) dataset produced by Portmann, Siebert, and Döll (2010).

36This proportion excludes oceans, seas, and other large water bodies such as the Great Lakes.
37The exact years of water table depth observations in Fan, Li, and Miguez-Macho (2013) vary

across regions but end in 2009.
38This time period corresponds to the original grace satellite mission. A follow-on mission

continues to extend this time frame, but we limit our analysis to the original mission for consistency
with the years that overlap with other agricultural data used throughout the analysis.

39Equivalent water height is defined as the depth of water that would be present were it to be
spread evenly across the entire surface of a grid cell. We specifically use the Goddard Space Flight
Center’s “mascon” solutions, which are equal-area. Other solutions, such as the mascons proceessed
by nasa’s Jet Propulsion Laboratory, are equal-angle.
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et al., 2018; Richey et al., 2015), assessing ice and glacier melt (Chen, Wilson, and
Tapley, 2013), and quantifying changing ocean currents (Wahr, Jayne, and Bryan,
2002), among many other applications. Their use in economics, however, has been
much more limited.40 Throughout our analysis, we use the raw monthly ∆tws ob-
servations to compute grid-cell specific trends in total water storage (in centimeters
of equivalent height lost or gained per year) using time series regressions of ∆tws on
day-of-sample, including monthly fixed effects to remove the role of seasonality.

The primary drawback of the grace data is that the inferred trends provide
no information about the level of groundwater or surface water in any location at
any point. Thus, we couple the time-series data on trends from grace with the
cross-sectional data on levels of groundwater and surface water from Fan, Li, and
Miguez-Macho (2013) to provide a more complete picture of the recent status and
dynamic evolution of water availability throughout the world.

Other hydrological data

We supplement the two primary datasets on water availability described above with
a range of other relevant global spatial hydrological datasets. We use data on cumu-
lative precipitation at 0.25◦×0.25◦ resolution from the Global Meteorological Forcing
Dataset (gmfd) version 3 from Princeton University (Sheffield, Goteti, and Wood,
2006). We also collect satellite data on the presence of surface water at a 30-meter
resolution from Pekel et al. (2016) as a complement to the measure available from
Fan, Li, and Miguez-Macho (2013).

We collect several datasets relevant to calibrating the law of motion for local
water table depths in the model (Equation (9)). These include global spatial data
on soil type from Hengl et al. (2017) and specific yield by soil type from Loheide,
Butler, and Gorelick (2005). Specific yield is the volume of water that can be drained
from porous media by gravity, relative to the total volume of the media. This value,
between zero and one, indicates the space available in the soil for water mass to be
gained or lost. Thus, we use soil type information from Hengl et al. (2017) with
specific yield by soil type from Loheide, Butler, and Gorelick (2005) to estimate the
average specific yield at grid cell level across the globe. This then enables us to map
changes in the volume of water in a given location into changes in water table depth
in model simulations.

A.2 Global agricultural spatial data

Agricultural land use

We use global spatial data on agricultural land use at a 10km×10km resolution com-
piled by Monfreda, Ramankutty, and Foley (2008). These data use a combination

40The two exceptions of which we are aware are recent work by Taylor (2022) and a related
preceding paper by Carleton (2021).
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of remote sensing and census records from national and subnational government
entities to estimate the fraction of land area in each grid cell allocated to planting
each of 175 crops, and to pasture land, in the year 2000.41 In this paper, we use
the union of cropped area and pasture land as the definition of arable land with the
potential for cultivation.

We supplement the data on crop choice and land use with additional spa-
tial data that measures the proportion of agricultural land equipped for irrigation.
This dataset is called the Global Map of Irrigation Areas, and is compiled by the
United Nations Food and Agriculture Organization (fao) and Rheinische Friedrich-
Wilhelms University. The data comes at the 5 arc-minute resolution and contains
estimates for the year 2005.

Potential yields

The second global spatial agricultural dataset comes from the fao’s Global Agro-
Ecological Zones (gaez). This data contains potential yields for 38 crops at 5 arc-
minute resolution, estimated using an agronomic model that incorporates detailed
local information on soils, geography, and climate. The model provides crop-specific
estimates of the maximum yield attainable under a range of possible assumptions
about farmer inputs and climate conditions.

Critically, this data provides estimates of potential yields for all crops in all
locations, including those that have not been historically observed in a given place.
This allows for a rich representation of regional comparative advantage in agriculture
and for counterfactual model simulations in which crop choice can shift meaningfully
across location. Costinot, Donaldson, and Smith (2016) pioneered the use of this
data in quantitative trade models. In our implementation, we follow their work in
using the high-input yield estimates, but restrict attention to the historical climate
scenario that uses average weather from 1961-1990. We take the weighted average
of “rain-fed” and “irrigated” potential yields, using the data on the area equipped
for irrigation in each location to assign weights between the two.

Crop-specific water intensity of production

We use data from Mekonnen and Hoekstra (2011) to estimate the average global wa-
ter intensity of each crop. These estimates are denominated in units of cubic meters
of water used by the crop per ton of output. To estimate these values, Mekonnen and
Hoekstra (2011) trace water used in agricultural production throughout its supply
chain. Specifically, the paper quantifies agricultural water consumption throughout
the world at the 5 arc-minute resolution using a model that combines hydrological
and agronomic mechanisms with detailed spatial data on climate and soil conditions,

41While more recent products exist for aggregate cropped area, such as Potapov et al. (2022),
updated estimates of crop- and pasture-specific areas are not available.
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crop planting and harvesting dates, irrigation techniques, information on farmer in-
puts such as nitrogen, and data on land use from Monfreda, Ramankutty, and Foley
(2008). The quantitative findings from Mekonnen and Hoekstra (2011), which in-
dicate that over 90% of humanity’s water consumption is dedicated to agricultural
production as detailed in the main text in Fact 2, are corroborated in a recent review
article by d’Odorico et al. (2019).

We combine the estimates from Mekonnen and Hoekstra (2011) with data on
the average global yield of each crop to construct a dataset of crop-specific water
intensities denominated in units of cubic meters per hectare. Note the caveat that
Mekonnen and Hoekstra (2011) provide only an average global estimate of crop
water use without any heterogeneity, so a data limitation of the current analysis is
that we do not currently account for changes in water use arising from different tech-
niques of growing a given crop, or other differences in crop-specific water intensity
of production across space.

A.3 Global country-level data

Production and trade

We collect data from faostat on crop-specific production in metric tons along with
farm-gate prices measured in U.S. dollars per ton. The data is available for over 200
countries from 1961–2020, though in our implementation in the model calibration
we use a cross-section of the data for a subset of countries in 2009. We also use data
on bilateral trade flows by crop for the same year from the un Comtrade database.

Agricultural policy

Government interventions in agricultural markets play a critical role in shaping
global agricultural trade patterns. Analyzing these policies in an international con-
text, however, is complicated by the wide array of relevant policy tools with inter-
acting and overlapping effects, including output taxes and subsidies, input subsidies,
import tariffs, quotas, sanctions, and regulations. Furthermore, these policies are
implemented within institutional contexts that differ substantially across countries,
such that their definition and interpretation may not be consistent across locations.

We overcome these challenges by using data from the World Bank’s Distor-
tions to Agricultural Incentives (dai) project, which constructs an internationally-
comparable measure of agricultural policy interventions that is both comprehensive
and parsimonious. Included in these data is a single summary statistic, known as
the nominal rate of assistance (nra), measured for 80 products in 82 countries.

The nra captures the equivalent product-specific net subsidy or tax that re-
sults from the combined effect of the full range of policies that include direct taxes
and subsidies, tariff and non-tariff barriers to trade, and government manipulation
of foreign exchange markets (Anderson, Kurzweil, Martin, Sandri, and Valenzuela,
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2008). The nra measure—positive for net subsidies and negative for net taxes—
can be interpreted as the percentage difference between domestic farm-gate prices
and international prices for the same product, excluding transportation and dis-
tribution costs. Critically, the measure does not include any water-specific policy
interventions, such as subsidies for agricultural energy use or irrigation.

The dai data has been used previously to study topics ranging from politi-
cal economy (Anderson, Rausser, and Swinnen, 2013) to agricultural productivity
(Adamopoulos and Restuccia, 2014). In this paper, we use this data to investigate
the spatial correlation between agricultural policy and water resources in Section 2,
and to calibrate the output market distortions in the model in Section 3.
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B.1 Derivations

B.1.1 Optimal consumption bundle

We wish to verify Equation (10). The representative consumer of country i chooses
Coit and {Ckjit} every period to maximize

Uit = Coit + ζi lnCit

with the aggregators

Cit =

[∑
k∈K

(
ζki

)1/κ (
Ckit

)κ−1
κ

] κ
κ−1

Ckit =

∑
j∈I

(
ζkji

)1/σ (
Ckjit

)σ−1
σ

 σ
σ−1

subject to the budget constraint

Yit = Coit +
∑
k

∑
j

δkjip
k
jtC

k
jit.

We solve the problem nest-by-nest:

(i) what is the optimal cross-country bundle {Ckjit}j for a given crop-specific index

Ckit?

(ii) what is the optimal cross-crop bundle {Ckit}k for a given agricultural index
Cit?
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(iii) what is the optimal expenditure split between the outside good Coit and the
agricultural index Cit?

The usual ces derivations give us the following relationships for (i) and (ii):

Ckjit = ζkji

(
δkjip

k
jt

)−σ (
P kit

)σ
Ckit with price index P kit =

[∑
n

ζkni

(
δknip

k
nt

)1−σ] 1
1−σ

Ckit = ζki

(
P kit

)−κ
(Pit)

κCit with price index Pit =

[∑
k

ζki

(
P kit

)1−κ] 1
1−κ

.

The outermost nest (iii) is simply the solution to

max
Coit,Cit

Coit + ζi lnCit s.t. Yit = Coit + PitCit,

which is PiCi = ζi and Coit = Yit − ζi. Putting everything together:

Ckjit = ζkji

(
δkjip

k
jt

)−σ (
P kit

)σ
Ckit

= ζkji

(
δkjip

k
jt

)−σ (
P kit

)σ
ζki

(
P kit

)−κ
(Pit)

κCit

= ζkji

(
δkjip

k
jt

)−σ (
P kit

)σ
ζki

(
P kit

)−κ
(Pit)

κ−1ζi

= ζkji

(
δkjip

k
jt

)−σ (
P kit

)σ−1
ζki

(
P kit

)1−κ
(Pit)

κ−1ζi

=
ζkji

(
δkjip

k
jt

)−σ
(
P kit
)1−σ ζki

(
P kit
)1−κ

(Pit)1−κ
ζi,

which, after reversing the order of terms and substituting in the definitions of the
price indices, gives us Equation (10).

B.1.2 Optimal labor allocation and water use

For a given crop k, the farmer solves the labor allocation problem

max
H∈[0,1]

Qfk(ω)[H] = Afk(ω)Hα
[
Nfk(H)

]1−α
where Nfk(H) ≡ min

{
1,

Awq (Dq(f))[1−H]

φk

}
denotes the “natural capital” (i.e., the

effective bundle of land and groundwater) the farmer can use to grow crop k if
he allocates fraction H of his labor to tending the crop (hence 1 − H to water
extraction). An equivalent formulation of Nfk(H) is

Nfk(H) =

1 if H ≤ 1− φk

Awq (Dq(f))
,

Awq (Dq(f))

φk
(1−H) if H ≥ 1− φk

Awq (Dq(f))
.
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Note that only in the first case would the farmer be irrigating his entire parcel.
We wish to derive the farmer’s optimal policy function for labor, Hfk(ω), which

in turn will determine how much water he extracts. We can prove almost imme-
diately that the labor allocated to extracting groundwater will be no more than

φk

Awq (Dq(f))
because land and water are used in fixed proportions.

Lemma B.1. Hfk(ω) ≥ 1− φk

Awq (Dq(f))
.

Proof. Nfk(H) is constant but Afk(ω)H is strictly increasing—hence Qfk(ω)[H] is

strictly increasing—for any H < 1− φk

Awq (Dq(f))
, so the farmer’s optimal H cannot be

in that range.

Now consider the range over which H > 1 − φk

Awq (Dq(f))
and take the derivative

of the farmer’s objective with respect to H:

d

dH

{
Afk(ω)Hα

[
Nfk(H)

]1−α}
= Afk(ω)

[
α

(
Nfk(H)

H

)1−α

+ (1− α)(Nfk)′(H)

(
H

Nfk(H)

)α]

= Afk(ω)

(
Awq (Dq(f))

φk

)1−α [
α

(
1−H
H

)1−α
− (1− α)

(
H

1−H

)α]
.

Setting this derivative equal to zero yields Hfk(ω) = α over that range. Combining
this result with Lemma B.1, it follows that the optimal policy function for labor is

Hfk =

1− φk

Awq (Dq(f))
if φk

Awq (Dq(f))
≤ 1− α

α if φk

Awq (Dq(f))
> 1− α,

(B.1)

where we’ve dropped the argument ω identifying the parcel because it proved irrel-
evant.

Accordingly, we can summarize the output of crop k by a farmer on parcel ω
of field f as Afk(ω)M(φk, Dq(f)), where

M(φk, Dq(f)) =


(

1− φk

Awq (Dq(f))

)α
if φk

Awq (Dq(f))
≤ 1− α

α̃
(
Awq (Dq(f))

φk

)1−α
if φk

Awq (Dq(f))
> 1− α

(B.2)

with α̃ = αα(1 − α)1−α. It follows that output is always decreasing in the water
intensity φk and the water table depth D. Moreover, for any given water inten-
sity, M is a continuous function of depth with limits limD→0M(φk, D) = 1 and

limD→∞M(φk, D) = 0 and a kink at the depth D̂k
q for which φk

Awq (D̂
k
q )

= 1 − α and
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thus M(φk, D̂k
q ) = αα. With υ = 1, as it is calibrated in Section 4, one can further

show that M is concave in depth over [0, D̂k
q ] and convex over [D̂k

q ,∞).42

Finally, the groundwater extraction by a farmer on field f cultivating crop k is

xfk =

φ
k if φk

Awq (Dq(f))
≤ 1− α

(1− α)Awq (Dq(f)) if φk

Awq (Dq(f))
> 1− α.

(B.3)

B.1.3 Crop-specific cropped area shares (by field)

For convenience, assume i means i(f) and q means q(f) unless otherwise specified.
We wish to verify Equation (12). The probability that crop k is grown on any given
parcel ω of field f (where k = o means the farmer works in the outside sector and
leaves his parcel fallow) is the probability that the revenue from k is highest. Note

that the c.d.f. of rfkt (ω) is

F fkt (r) = exp

{
−γ
(

r

τkitp
k
itA

fkM(φk, Dqt)

)−θ}
which follows directly from Afk(ω) being distributed Fréchet and the definition

rfkt (ω) ≡ τkitp
k
itA

fk(ω)M(φk, Dqt). Note, too, that the same can be said for the
outside good k = o if we set poit = 1, Afo = Aoi , and φo = 0. Thus, we compute

P
{
rfkt (ω) = max{Aoi (ω), rf1t (ω), . . . , rfKt (ω)}

}
=

∫ ∞
0

∏
` 6=k

F f`t (r) d
[
1− F fkt (r)

]
=

∫ ∞
0

∏
` 6=k

F f`t (r)×
[
−ffkt (r)

]
dr

=

∫ ∞
0

∏
`∈K∪{o}

exp

−γ
(

r

τ `itp
`
itA

f`
i M(φk, Dqt)

)−θ −γθ(
τkitp

k
itA

fkM(φk, Dqt)
)−θ r−θ−1 dr

=
(
τkitp

k
itA

fkM(φk, Dqt)
)θ ∫ ∞

0
− exp

−γr−θ ∑
`∈K∪{o}

(
τ `itp

`
itA

f`
i M(φk, Dqt)

)θ γθr−θ−1 dr

=
(
τkitp

k
itA

fkM(φk, Dqt)
)θ ∫ ∞

0
− exp

{
−γ
[
(Aoi )

θ + Πf
t

]
r−θ
}
γθr−θ−1 dr

=

(
τkitp

k
itA

fkM(φk, Dqt)
)θ

(Aoi )
θ + Πf

t

∫ ∞
0

d
[
1− F ft (r)

]
=

(
τkitp

k
itA

fkM(φk, Dqt)
)θ

(Aoi )
θ + Πf

t

42Proof available upon request.
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as claimed, where

1− F ft (r) ≡ 1− exp
{
−γ
[
(Aoi )

θ + Πf
t

]
r−θ
}
.

is the probability that the revenue for at least one use of a given parcel on field f
(including leaving it fallow) exceeds r.

B.1.4 Expected productivity given crop selection

Continue to assume that i means i(f) and q means q(f) unless otherwise specified.
We wish to show that

E
[
Afk(ω)

∣∣∣rfkt (ω) = max{Aoi (ω), rf1t (ω), . . . , rfKt (ω)}
]

= Afk
(
πfkt

)−1/θ
.

To compute this conditional expected value, we need to derive the corresponding
conditional probability distribution. The probability that crop k is grown on field
f with productivity a or less given that it is the profit-maximizing crop choice for
field f can be decomposed as (i) the joint probability that crop k earns return at
or below rkt (a) ≡ τkitp

k
itaM(φk, Dqt) and is the profit-maximizing crop choice for f

divided by (ii) the unconditional probability of being the profit-maximizing crop,

πfkt . Then,

P
{
rfkt (ω) < rkt (a)

∣∣∣rfkt (ω) = max{Aoi (ω), rf1t (ω), . . . , rfkt (ω)}
}

=
1

πfkt

∫ rkt (a)

0

∏
6̀=k
F f`t (r) d

[
1− F fkt (r)

]
=

1

πfkt

∫ rkt (a)

0

∏
6̀=k
F f`t (r)×

[
−ffkt (r)

]
dr

=
1

πfkt

∫ rkt (a)

0

∏
`∈K∪{o}

exp

−γ
(

r

τ `itp
`
itA

f`
i M(φk, Dqt)

)−θ −γθ(
τkitp

k
itA

fkM(φk, Dqt)
)−θ r−θ−1 dr

=

(
τkitp

k
itA

fkM(φk, Dqt)
)θ

πfkt

∫ rkt (a)

0
− exp

−γr−θ ∑
`∈K∪{o}

(
τ `itp

`
itA

f`
i M(φk, Dqt)

)θ γθr−θ−1 dr

=

(
τkitp

k
itA

fkM(φk, Dqt)
)θ

πfkt

∫ rkt (a)

0
− exp

{
−γ
[
(Aoi )

θ + Πf
t

]
r−θ
}
γθr−θ−1 dr

=
1

πfkt

[(
τkitp

k
itA

fkM(φk, Dqt)
)θ

(Aoi )
θ + Πf

t

] [
1− F ft

(
rkt (a)

)]
= 1− F ft

(
rkt (a)

)
.
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The expected value of rfkt (ω) against this conditional distribution is

E
[
rfkt (ω)

∣∣∣rfkt (ω) = max{Aoi (ω), rf1t (ω), . . . , rfKt (ω)}
]

=

∫ ∞
0

r d
[
1− F ft (r)

]
=

∫ ∞
0
−rγθ

[
(Aoi )

θ + Πf
t

]
r−θ−1 exp

{
−γ
[
(Aoi )

θ + Πf
t

]
r−θ
}
dr,

and now with the variable transformation x ≡ γ
[
(Aoi )

θ + Πf
t

]
r−θ,

=

∫ ∞
0

r

(
dx

dr

)
exp{−x} dr

=

∫ ∞
0

 x

γ
[
(Aoi )

θ + Πf
t

]
−1/θ exp{−x} dx

= γ1/θ
[
(Aoi )

θ + Πf
t

]1/θ ∫ ∞
0

x−1/θ exp{−x} dx

= γ1/θ
[
(Aoi )

θ + Πf
t

]1/θ
Γ

(
θ − 1

θ

)
=
[
(Aoi )

θ + Πf
t

]1/θ
.

Now transforming from revenue to productivity:

E
[
Afkt (ω)

∣∣∣rfkt (ω) = max{Aoi (ω), rf1t (ω), . . . , rfkt (ω)}
]

=

[
(Aoi )

θ + Πf
t

]1/θ
τkitp

k
itM(φk, Dqt)

= Afk

[
(Aoi )

θ + Πf
t

]1/θ
τkitp

k
itA

fkM(φk, Dqt)

= Afk
(
πfkt

)−1/θ
which completes the proof.

B.1.5 Robustness: Nested CES agricultural technology

Following Boppart et al. (2019), who reject Cobb-Douglas technology in the agricul-
tural sector in favor of nested ces technologies, we consider the technology (omitting
sub- and superscripts for convenience)

Q = A

α 1
ξHH

ξH−1

ξH + (1− α)
1
ξH

L ξM−1

ξM +

(
G

φk

) ξM−1

ξM


ξM
ξM−1

ξH−1

ξH


ξH
ξH−1

. (B.4)
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One can verify that in the limit as ξH → 1 and ξM → 0, this becomes the technology
in Equation (4).

A crucial step in characterizing the equilibrium of the model is showing that
agricultural output on a given parcel can be written as the product of its idiosyn-
cratic tfp draw and a function M that is independent of the realization of that
tfp draw (see Section B.1.2). From the farmer’s first-order conditions with the
technology in Equation (B.4), one can verify that

Qfkt (ω) = Afk(ω)M̃(φk, Dq(f)t)

with

M̃(φk, Dq(f)t) =

[
α

1
ξH (H̃)

ξH−1

ξH

+ (1−α)
1
ξH

1 +

(
Awq (Dq(f)t)[1−H̃]

φk

) ξM−1

ξM


ξM
ξM−1

ξH−1

ξH ] ξH
ξH−1

,

where H̃ is implicitly defined by the condition

H̃ =
α

1−α

(Awq (Dq(f)t)

φk

) ξM−1

ξM

(1−H̃)
− 1
ξM

1 +

[
Awq (Dq(f)t)[1−H̃]

φk

] ξM−1

ξM


1

ξM−1

 .
So one can endow farmers with the technology in Equation (B.4) and define an
equilibrium as before, just in terms of M̃ . But doing so would require us to find the
root of the preceding nonlinear equation everytime the depth of an aquifer changed,
which will happen for every aquifer in every period along the equilibrium path.
Moreover, to the best of our knowledge, there is no globally comprehensive data
with which to estimate the elasticities ξH and ξM , nor a natural benchmark to
which they can be calibrated. As such, we chose the Leontief specification presented
in the main text.

B.2 Existence and uniqueness

The goal of this section is to characterize under what conditions the competitive
equilibrium given by Definition 1 exists and is unique. To that end, we’ll proceed by
defining and characterizing two sub-equilibria: a trade equilibrium, which takes the
vector of aquifer depths as given, and a steady-state equilibrium, which imposes con-
stant depths. Once we’ve characterized those two sub-equilibria, we’ll characterize
the full dynamic competitive equilibrium given by Definition 1. Because agricultural
policy distortions are exogenous and act proportionally on prices, they would im-
pose no additional complications on the arguments below, so they’ve been ignored
to save on notation.

68



B.2.1 . . . of the trade equilibrium

A trade equilibrium asks only how goods and factors will be allocated today given
depths D; it does not consider how the allocation today will affect depths tomorrow.
A formal definition follows.

Definition B.1. Given an arbitrary vector of groundwater depths, D, a trade equi-
librium is a vector of consumption, {Ckji}, output, {Qki }, prices, {pki }, and shares,

{πfk}, such that Equations (10), (12), (13), and (14) hold.

With this reduction in scope, we’ve recovered a static neoclassical trade model.
The presence of the outside good means that this trade block falls outside the class
of gravity models that have been characterized by Allen, Arkolakis, and Takahashi
(2020).43 Instead, we’ll follow Alvarez and Lucas (2007) in using the aggregate excess
demand function z(p̃):

zik(p̃) =
∑
j∈I

δkij(p
oζj)

ζkj

(
P kj

)1−κ
∑

`∈K ζ
`
j

(
P `j

)1−κ ζkij

(
δkijp

k
i

)−σ
∑

n∈I ζ
k
nj

(
δknjp

k
n

)1−σ

−
∑
f∈Fi

hfAfki M(φk, Dq(f))


(
pkiA

fk
i M(φk, Dq(f))

)θ
(poAoi )

θ +
∑

`∈K

(
p`iA

f`
i M(φ`, Dq(f))

)θ


θ−1
θ

and

zo(p̃) =
∑
i

(
Yi
po
− ζi

)
−
∑
i

∑
f∈Fi

hfAoi

 (poAoi )
θ

(poAoi )
θ +

∑
`∈K

(
p`iA

f`
i M(φ`, Dq(f))

)θ


θ−1
θ

where p̃ ≡ [p, po], with po being the price of the outside good (which we had been
normalizing to one), and Yi is total income Yi = poQoi +

∑
k p

k
iQ

k
i . By Mas-Colell,

Whinston, and Green (1995, Ch.17), the equilibrium exists if

1. z is continuous;

2. z is homogeneous of degree zero in p̃;

3. p̃ · z = 0 for all strictly positive price vectors (Walras’ law);

43Considering the agricultural and outside sectors together, aggregate demand here is not ces,
which violates condition C.2 of Allen, Arkolakis, and Takahashi (2020). One may consider only the
agricultural sector, which is well-described by an Armington model of trade, but then expenditure
on the outside good is isomorphic to an endogenous trade imbalance, which violates condition C.5.
Note, too, that we cannot map production in each country to a representative good, which violates
condition C.3.
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4. there is a z > 0 such that z`(p̃) > −z for every commodity ` and all p;

5. if p̃n → p̃, where p̃ 6= 0 but p̃` = 0 for some `, then

max{z1(p̃n), . . . , zIK+1(p̃
n)} → ∞;

and is unique if, in addition,

6. ∂z`(p̃)
∂p`′

> 0 for all `, `′ with ` 6= `′ and all p̃ ∈ RIK+1
++ (gross substitutes).

Here we’re leveraging that we can identify the trade equilibrium by just the vector
of prices (up to scale): Once we have the prices, the vectors of consumption, output,
and land use shares are determined uniquely.

Proposition B.2. A trade equilibrium exists for any vector of depths D.

Proof. We just need to check conditions 1-5. We’ll do so in order.

1. Continuity is self-evident.

2. Homogeneity of degree zero is also self-evident (multiply every price by the
same factor λ > 0 and confirm that all the multipliers cancel).

3. Let’s look at the demand components first. In zik the dot product gives us∑
j p

k
i δ
k
ijC

k
ij . In zo we get

∑
i(Yi − poζi). Now the supply terms: in zik we get

pkiQ
k
i and in zo we get poQoi . So

p̃ · z =
∑
i,k,j

pki δ
k
ijC

k
ij +

∑
i

(Yi − poζi)−
∑
i,k

pkiQ
k
i −

∑
i

poQoi

=
∑
i,k,j

pki δ
k
ijC

k
ij −

∑
i

poζi

=
∑
i,k,j

pki δ
k
ijC

k
ij −

∑
i

PiCi

= 0.

4. The demand terms are always non-negative, so set them to zero. For each
element of the supply terms, take the maximum value permissible (so maxf h

f

and maxfk A
fk and so on). Note that the max permissible share is always 1.

Since each maximum element is finite, one can construct a finite z̄ using these
maximums.
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5. Note that, defining Λfk ≡ hfAfkM(φk, Dq(f)) that is independent of prices
for fixed D,

max
ik

zik(p̃) ≥ max
ik

∑
j

δkijC
k
ij −max

ik

∑
f∈Fi

Λfk(πfk)(θ−1)/θ

≥ max
ik,j

δkijC
k
ij −max

ik

∑
f∈Fi

Λfk(πfk)(θ−1)/θ

≥ max
ik,j

δkijC
k
ij −max

ik

∑
f∈Fi

Λfk

where we get each inequality because, in order,

(i) we can show maxk(Ak −Bk) ≥ maxk Ak −maxk Bk as follows:

• suppose kδ = arg maxk(Ak −Bk) and kA = arg maxk Ak

• let δ ≡ AkA −Akδ
• consider the difference Akδ − Bkδ = Akδ + δ − (Bkδ + δ) = AkA −

(Bkδ + δ)

• now Bkδ + δ ≤ BkA ≤ maxk Bk, else kA would be the arg max of
Ak −Bk, not kδ;

(ii) a sum of positive terms is greater than its maximum term;

(iii) πfk ≤ 1 for all fk.

So the task reduces to showing that maxik,j C
k
ij(p̃) → ∞ for the given price

sequence, where we overload notation by considering k ∈ {K, o}. Consider the
definition of Ckij (for k ∈ K) term-by-term:

• the leftmost is poζi, which is obviously finite whenever po is finite

• the middle is bounded between zero and one

• the rightmost is also bounded between zero and one when pre-multiplied
by δkijp

k
i , so the rightmost on its own tends to infinity as pki → 0.

And if po → 0, it’s obvious from the definition of Coi that it will tend to infinity.

Proposition B.3. The trade equilibrium is unique for any vector of depths D.

Proof. We just need to check the gross substitutes condition.44 This is easy to
verify for the outside good with respect to any agricultural commodity price: in
the expression for zo(p̃), agricultural prices only show up in the denominator of
the term being subtracted. Now consider the excess demand for an agricultural

44The expressions for the relevant partial derivatives are easy to derive but repetitive to show,
so we omit them here in favor of a verbal argument.
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commodity, zik(p̃). The gross substitutes condition is satisfied with respect to the
outside good: if po increased, demand for any agricultural commodity would increase
(the first term), but supply of every agricultural commodity would decrease (the
second term), so excess demand for ik would surely increase. With respect to any
agricultural commodity from another country i′ 6= i, an increase in its price implies
a direct increase in demand for ik but no change in its supply, so zik(p̃) increases.
Finally, consider the direct effect of an increase in price for a commodity from the
same country, ik′ with k′ 6= k. By the same logic as before, demand for ik increases
as consumers substitute away from the higher price (first term) and supply of ik
decreases as domestic producers substitute toward the higher priced ik′ (second
term). Thus, excess demand for ik increases.

B.2.2 . . . of the steady-state equilibrium

A steady state is a path along which the depth of each aquifer is constant over time.
Since depths were the only variables evolving with any fundamental persistence, one
can define a steady state as a trade equilibrium in which the inflows to each aquifer
offset the outflows.

Definition B.2. A steady-state equilibrium is a vector of consumption, {Ckji}, out-

put, {Qki }, prices, {pki }, shares, {πfk}, groundwater depths, {Dq}, and groundwater
extractions, {Xq}, such that

(1− ψ)Xq = Rq, ∀q ∈ Q

and Equations (10), (12), (13), (14), and (15) hold.

Proposition B.4. A unique steady-state equilibrium exists.

Proof. Propositions B.2–B.3 established that for any vector of depths there exists
a unique vector of crop prices, which uniquely determines the rest of the trade
allocation. Accordingly, we can define the function

Xq(Dq) =
∑
f∈Fq

∑
k∈K

xfkhf

(
pki(f)A

fkM(φk, Dq)
)θ

(
Aoi(f)

)θ
+
∑

`∈K

(
p`i(f)A

f`M(φ`, Dq)
)θ ,

where the prices pki(f) are those from the corresponding trade equilibrium, so that a

steady-state equilibrium is D̄ = {D̄q} such that

(1− ψ)Xq(D̄q) = Rq, ∀q ∈ Q.

Equivalently, we can define the operator T : R|Q| 7→ R|Q| by

[T (D)]q = Dq + ρq[(1− ψ)Xq(Dq)−Rq]
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so that a steady-state equilibrium is D̄ = {D̄q} such that

D̄ = T (D̄).

If T is a contraction mapping, then the contraction mapping theorem implies that
it has a unique fixed point that can be computed by iteration. We conjecture, but
as of this draft have not shown, that T satisfies Blackwell’s sufficient conditions for
a contraction, which would in turn be sufficient to finish proving the claim.

B.2.3 . . . of the full dynamic competitive equilibrium

Notice an important feature of the proof of Proposition B.4: the operator T is the
law of motion for depth in Equation (9). We have shown that, by iterating this
operator forward and solving for the unique trade equilibrium at each step, we are
sure to converge to a unique steady state. The main result is then simply a corollary
of the three preceding propositions.

Corollary B.1. Given any initial vector of groundwater depths, {Dq0}, a unique
competitive equilibrium exists.

B.2.4 The outside sector as residual claimant

The aim of this section is to demonstrate that we demoted the outside sector from
the equilibrium definition only out of convenience; no bugaboos are hiding there.

We’ve done some of the work already in previous appendices. As we showed
in Appendix B.1.1, because the utility function in Equation (1) is quasilinear, the
representative consumer in country i spends her first ζi of income on agricultural
output. All residual income is either (i) spent on the outside good or (ii) taxed away
lump-sum.

In the main text we assumed conditions such that the outside good is always
consumed and produced in every country. Moreover, we assumed that it is homo-
geneous and freely traded, so the law of one price holds (and we normalized that
price to one). Accordingly, bilateral flows of the outside good are indeterminate;
countries are simply net importers or net exporters from a unified global market for
the outside good. In Appendix B.2.1, we stated the condition for that market to
clear when there are no taxes or subsidies (namely, zo(p̃) = 0). That condition is
guaranteed to be satisfied in equilibrium by Walras’ law.

It just remains to check that reintroducing the distortions does no harm. The
market clearing condition becomes

∑
i

(Yit − Tit − ζi) =
∑
i

∑
f∈Fi

hfAoi

(
πfot

) θ−1
θ
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where Yit = Qoit +
∑

k τ
k
itp

k
itQ

k
it is total income and Tit is the lump-sum tax. But

notice that budget balance would require

Tit =
∑
k

(τkit − 1)pkitQ
k
it

=
∑
k

τkitp
k
itQ

k
it −

∑
k

pkitQ
k
it,

so market clearing with government budgets balanced is just

∑
i

(
Qoit +

∑
k

pkitQ
k
it − ζi

)
=
∑
i

∑
f∈Fi

hfAoi

(
πfot

) θ−1
θ

which takes the exact same form as it did before we reintroduced taxes and is
therefore satisfied by Walras’ law.
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C Additional Figures

Figure C.1: Global distribution of water markets

Notes: This map shows the global distribution of water markets, as uncovered through an extensive
literature review. Subnational regions and countries shaded in dark blue have established formal
water markets in which extraction rights can be traded. Regions and countries in light blue indicate
locations where informal or inactive water markets are present. Grey areas indicate no formal or
informal water markets exist. Water markets rarely extend across the entire regions shaded, but
precise extents of these markets are impossible to determine with available data.
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Figure C.2: Cropped Area Fraction by Decile of Water Variables

(a) Rice (b) Almonds

Notes: The three graphs in Panel (a) show the cropped area fraction of rice as a percent of total
global rice acreage by decile of precipitation, groundwater table depth, and change in total water
storage. Similarly, the cropped area fractions of almonds by decile of water variables are shown in
the three graphs of Panel (b). Monfreda, Ramankutty, and Foley (2008) compiled the crop-level
agricultural use measure; the sources of the water variable data are discussed in Appendix A.
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