Agriculture, Trade, and the Spatial Efficiency of Global Water Use

Tamma Carleton (UC Berkeley & NBER) Levi Crews (UCLA) Ishan Nath (FRB San Francisco)

April 2025

Any views expressed in this paper do not necessarily represent those of the Federal Reserve System or its Staff.

SCIENCE

In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

• California almond production has **doubled** in the last 20 years

SCIENCE

In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

- California almond production has **doubled** in the last 20 years
- California almonds $\approx 80\%$ of world production $\rightarrow 70\%$ exported abroad

SCIENCE

In The Midst Of Drought, California Farmers Used More Water For Almonds

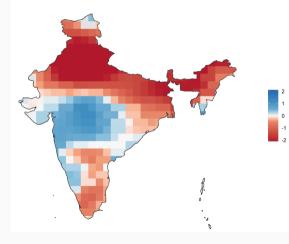
Mallory Pickett Former Contributor © I write about science and technology.

Sep 28, 2016, 05:20pm EDT

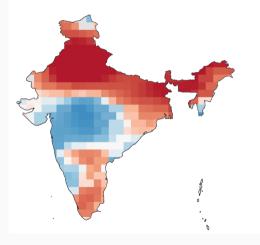
- California almond production has **doubled** in the last 20 years
- California almonds \approx 80% of world production \rightarrow 70% exported abroad
- Expansion coincides with **drought** and **land subsidence** due to groundwater extraction

SCIENCE

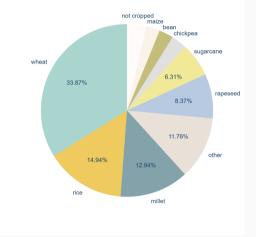
In The Midst Of Drought, California Farmers Used More Water For Almonds


Mallory Pickett Former Contributor © I write about science and technology.

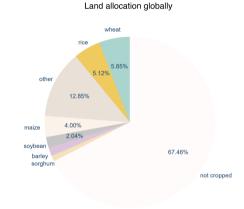
Sep 28, 2016, 05:20pm EDT



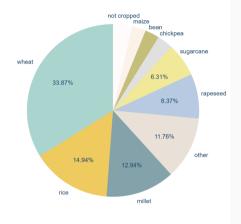
- California almond production has **doubled** in the last 20 years
- California almonds \approx 80% of world production \rightarrow 70% exported abroad
- Expansion coincides with **drought** and **land subsidence** due to groundwater extraction
- ${\sim}12$ liters of water used to grow one almond

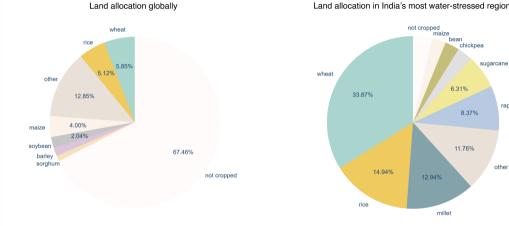

India's trend in total water storage (cm/year)

India's trend in total water storage (cm/year)



Land allocation in India's most water-stressed regions




-1

-2

Land allocation in India's most water-stressed regions

Land allocation in India's most water-stressed regions

India is now the world's leading exporter of rice

rapeseed

other

Crop trade depletes global groundwater

Published online 6 April 2017

The import and export of crops drawing on groundwater is threatening food and water security in the Middle East and elsewhere.

Nadia El-Awady

ENVIRONMENTAL RESEARCH LETTERS

LETTER • OPEN ACCESS

Global unsustainable virtual water flows in agricultural trade Lorenzo Rosa¹ (b), Davide Danilo Chiarelli² (b), Chengyi Tu^{1,3}, Maria Cristina Rulli² (b) and Paolo D'Odorico¹ (b)

- H" I

Published 22 October 2019 • © 2019 The Author(s). Pu Environmental Research Letters, Volume 14, Number 11 "The globalization of water through trade contributes to running rivers dry, an environmental externality commonly overlooked by trade policies" --Rosa et al. (2019)

doi:10.1038/nature21403

700 | NATURE | VOL 543 | 30 MARCH 2017

Groundwater depletion embedded in international food trade

Carole Dalin¹, Yoshihide Wada^{2,3,4,5}, Thomas Kastner^{6,7} & Michael J. Puma^{3,4,8}

'F'R

NASA-University Study Finds 11 Percent of Disappearing Groundwater Used to Grow Internationally Traded Food How do global agricultural trade patterns and policies affect ...

- long-run water availability,
- agricultural production,
- and welfare

across space and over time?

• Compile globally comprehensive geospatial dataset on water and agriculture

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - 1–2. Vast heterogeneity in water availability and use (ag. dominates) \rightarrow factor-content trade
 - 3-4. Pervasive distortions on input (open access) & output (tax/sub./tariff) sides of ag. market
 - 5. Water-intensive crops concentrate in water-abundant locations, but some unsustainably

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - 1–2. Vast heterogeneity in water availability and use (ag. dominates) ightarrow factor-content trade
 - **3–4.** Pervasive distortions on input (**open access**) & output (**tax/sub./tariff**) sides of ag. market
 - 5. Water-intensive crops concentrate in water-abundant locations, but some unsustainably
- Calibrate a quantitative dynamic spatial equilibrium model for world ag.
 - $\bullet\,$ intensive + extensive margins of ag., Ricardian + H–O trade, regional water budget
 - in GE: ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run regional water availability

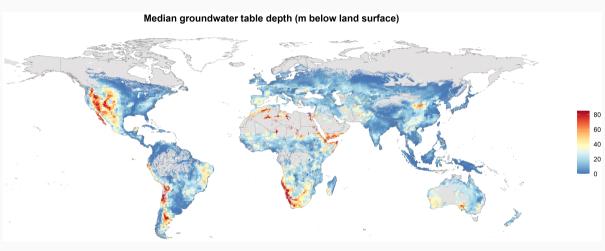
- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - 1–2. Vast heterogeneity in water availability and use (ag. dominates) ightarrow factor-content trade
 - **3–4.** Pervasive distortions on input (open access) & output (tax/sub./tariff) sides of ag. market
 - 5. Water-intensive crops concentrate in water-abundant locations, but some unsustainably
- Calibrate a quantitative dynamic spatial equilibrium model for world ag.
 - $\bullet\,$ intensive + extensive margins of ag., Ricardian + H–O trade, regional water budget
 - in GE: ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run regional water availability
- Use model simulations to characterize trade and welfare outcomes

- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - 1–2. Vast heterogeneity in water availability and use (ag. dominates) ightarrow factor-content trade
 - 3–4. Pervasive distortions on input (open access) & output (tax/sub./tariff) sides of ag. market
 - 5. Water-intensive crops concentrate in water-abundant locations, but some unsustainably
- Calibrate a quantitative dynamic spatial equilibrium model for world ag.
 - intensive + extensive margins of ag., Ricardian + H–O trade, regional water budget
 - in GE: ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run regional water availability
- Use model simulations to characterize trade and welfare outcomes
 - How does global ag. trade affect long-run water availability and welfare?

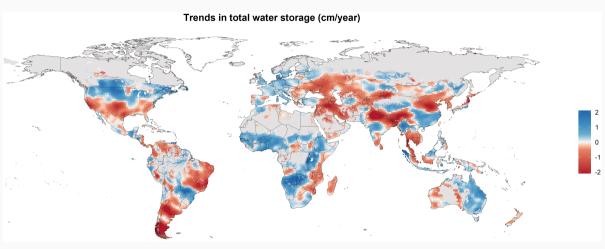
- Compile globally comprehensive geospatial dataset on water and agriculture
- Establish a series of facts about the allocation of water in global agricultural production:
 - 1–2. Vast heterogeneity in water availability and use (ag. dominates) ightarrow factor-content trade
 - 3–4. Pervasive distortions on input (open access) & output (tax/sub./tariff) sides of ag. market
 - 5. Water-intensive crops concentrate in water-abundant locations, but some unsustainably
- Calibrate a quantitative dynamic spatial equilibrium model for world ag.
 - intensive + extensive margins of ag., Ricardian + H–O trade, regional water budget
 - in GE: ag./trade policy \rightarrow ag./trade spatial allocation \leftrightarrow long-run regional water availability
- Use model simulations to characterize trade and welfare outcomes
 - How does global ag. trade affect long-run water availability and welfare?
 - Do specific ag./trade policies *exacerbate* or *mitigate* regional water depletion?

- 1. Global ag. trade dramatically reduces global land and water use
 - $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run

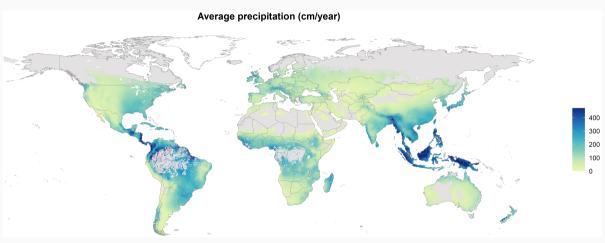
- 1. Global ag. trade dramatically reduces global land and water use
 - $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run
- 2. Water-scarce regions benefit the most from trade
 - $\rightarrow\,$ import water-intensive goods, avoiding severe water depletion

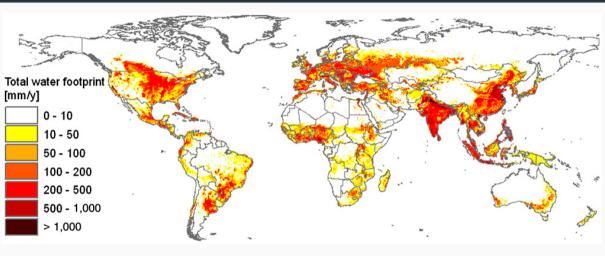

- 1. Global ag. trade dramatically reduces global land and water use
 - $\rightarrow\,$ prevents water depletion over time, raising welfare in the long run
- 2. Water-scarce regions benefit the most from trade
 - ightarrow import water-intensive goods, avoiding severe water depletion
- 3. Liberalizing trade can be harmful in specific contexts and regions:
 - California and India avoid extreme depletion under autarky
 - historic Uruguay Round of trade liberalization increased water depletion and lowered welfare

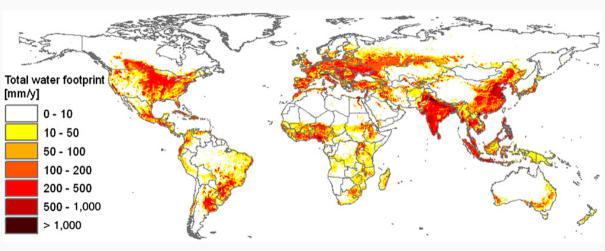
Related literature

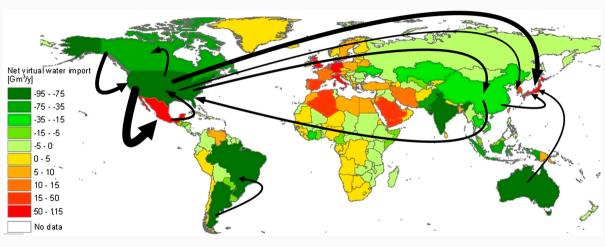

- Copeland, Shapiro, and Taylor (2022) review literature on globalization and the environment, but **little work on natural resources** [*lately:* Farrokhi et al. (2023)]
- Anderson, Rausser, and Swinnen (2013) review literature on ag. policy distortions, but **no investigation of environmental effects** [*exception:* Berrittella et al. (2008) using GTAP]
- Reduced-form empirics and PE analysis:
 - water markets: Bruno and Jessoe (2021), Ayres, Meng, and Plantinga (2021), Rafey (2023)
 - water + ag./trade policy: Debaere (2014), Carleton (2021), Sekhri (2022)
- Simple two-country/SOE models: Chichilnisky (1994) and Brander and Taylor (1997)
 - lack of property rights can give comparative advantage in extractive good
 - opening to trade \rightarrow potentially long-run welfare losses
- Closest quantitative trade model: Costinot, Donaldson, and Smith (2016) on effect of climate change on agricultural comparative advantage, but **no dynamics** and **no water**

Facts


Thru lens of basic water budget: $\Delta Depth_{qt} = \rho_q(Consume_{qt} - Recharge_{qt})$ given $Depth_{q0}$

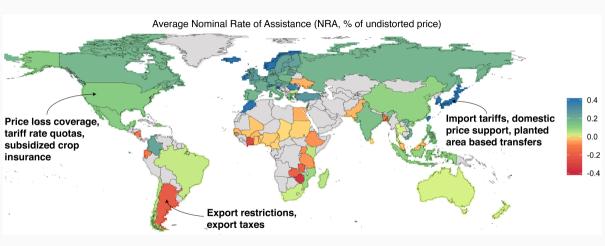

Thru lens of basic water budget: $\Delta Depth_{at} = \rho_q(Consume_{qt} - Recharge_{at})$ given $Depth_{q0}$


Thru lens of basic water budget: $\Delta \text{Depth}_{at} = \rho_q(\text{Consume}_{qt} - \text{Recharge}_{at})$ given Depth_{a0}

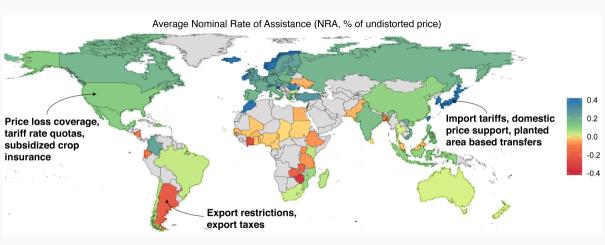

Thru lens of basic water budget: $\Delta Depth_{at} = \rho_q (Consume_{qt} - Recharge_{qt})$ given $Depth_{q0}$

Thru lens of basic water budget: $\Delta Depth_{at} = \rho_q (Consume_{qt} - Recharge_{at})$ given $Depth_{q0}$

It's all about agriculture: \sum_{q} Consume_{qt} \approx 90% agricultural input use (d'Odorico et al., 2019)

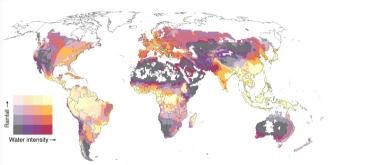

Ag. trade embeds 20–25% of \sum_{q} Consume_{qt} (Hoekstra and Mekonnen, 2012; Carr et al., 2013)

Facts 3–4: Pervasive distortions on input & output sides of ag. market

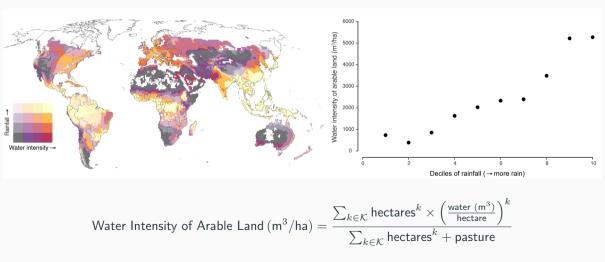


>93% of global agricultural production occurs in regions with no formal water markets

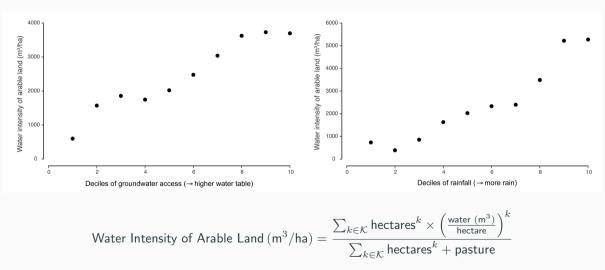
Facts 3–4: Pervasive distortions on input & output sides of ag. market


Facts 3-4: Pervasive distortions on input & output sides of ag. market

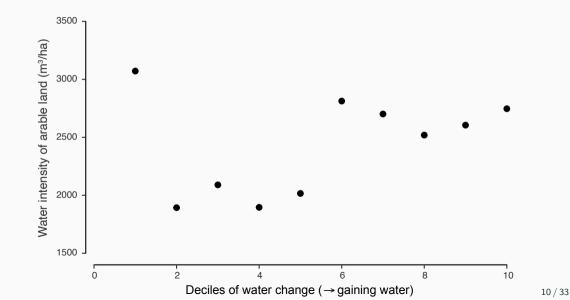
10pp inc. in net ag. subsidy \rightarrow $\Delta {\rm Depth}_{qt}$ from 50th to 75th pctl (Carleton, 2021)

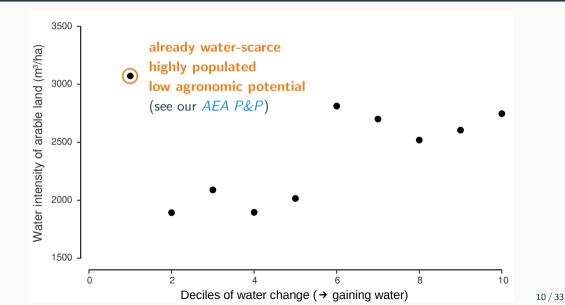

$$\text{Water Intensity of Arable Land} \left(\mathsf{m}^3/\mathsf{ha}\right) = \frac{\sum_{k \in \mathcal{K}} \mathsf{hectares}^k \times \left(\frac{\mathsf{water} \ (\mathsf{m}^3)}{\mathsf{hectares}}\right)^k}{\sum_{k \in \mathcal{K}} \mathsf{hectares}^k + \mathsf{pasture}}$$

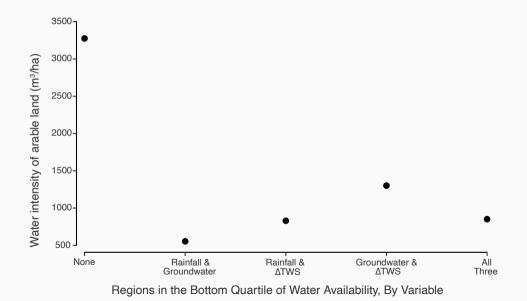
Fact 5: Water-intensive crops locate primarily in water-abundant regions...



Water Intensity of Arable Land
$$(m^3/ha) = \frac{\sum_{k \in \mathcal{K}} hectares^k \times \left(\frac{water (m^3)}{hectare}\right)^k}{\sum_{k \in \mathcal{K}} hectares^k + pasture}$$


Fact 5: Water-intensive crops locate primarily in water-abundant regions...


Fact 5: Water-intensive crops locate primarily in water-abundant regions...


Fact 5: ... but also in some regions losing water rapidly

Fact 5: ... but also in some regions losing water rapidly

Fact 5: ... but also in some regions losing water rapidly

Model

• Time and space: discrete time t, geography split into

Country, Field $_f$ — Parcels $_{\omega \in [0,h^f]}$ Aquifer_a

- Two sectors: homog. outside good + crops k distinguished by exporter j, all traded
- Atomistic laborers: earn wage w_i in outside sector OR farm chosen k on assigned parcel ω
- Water: drawn from q to farm $f \in \mathcal{F}_q$, w/ each q an open access renewable resource

For each country *i*, the representative consumer lives **hand-to-mouth** with **quasilinear** utility over the outside good and a **nested CES** bundle of exporter-specific crop varieties:

$$U_{it} = C_{it}^{o} + \zeta_{i} \ln C_{it} \quad \text{with} \quad C_{it} = \left[\sum_{k \in \mathcal{K}} \left(\zeta_{i}^{k} \right)^{1/\kappa} \left(C_{it}^{k} \right)^{\frac{\kappa-1}{\kappa}} \right]^{\frac{\kappa}{\kappa-1}}$$
$$C_{it}^{k} = \left[\sum_{j \in \mathcal{I}} \left(\zeta_{ji}^{k} \right)^{1/\sigma} \left(C_{jit}^{k} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

Technology I: Agriculture

Consider the farmer of parcel ω on field $f \in \mathcal{F}_{iq}$, who combines ...

- $H_t^{fk}(\omega)$ units of labor (endowment = 1)
- $L_t^{fk}(\omega)$ units of land (endowment = 1)
- $G_t^{fk}(\omega)$ units of groundwater

to produce

$$Q_t^{fk}(\omega) = A^{fk}(\omega) \left[H_t^{fk}(\omega) \right]^{\alpha} \left[\min\left\{ L_t^{fk}(\omega), \frac{G_t^{fk}(\omega)}{\phi^k} \right\} \right]^{1-\alpha},$$

of crop k, where

- ϕ^k is water intensity of crop k
- $A^{fk}(\omega)$ is idiosyncratic crop-specific TFP drawn i.i.d from Fréchet:

$$\mathbb{P}\left\{A^{fk}(\omega) \le a\right\} = \exp\left\{-\gamma \left(\frac{a}{A^{fk}}\right)^{-\theta}\right\} \quad \text{with} \quad \mathbb{E}[A^{fk}(\omega)] = A^{fk}$$

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

Technology II: Water extraction

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

[in the background: $\Upsilon_q = \texttt{fcn}(\texttt{rainfall}_q, \texttt{surface water}_q, \texttt{pumping tech}_q, \ldots)$]

• A farmer must use some of his labor to pump up groundwater for cultivation:

$$G_t^{fk}(\omega) = A_{q(f)}^w(D_{q(f)t}) \left[1 - H_t^{fk}(\omega) \right]$$

where D_{qt} is the **depth** of groundwater in aquifer q at time t, with $A_q^w(D) = \Upsilon_q D^{-v}$.

[in the background: $\Upsilon_q = \texttt{fcn}(\texttt{rainfall}_q, \texttt{surface water}_q, \texttt{pumping tech}_q, \ldots)$]

• Implications for crop output: Can show that

$$\max_{H} Q_t^{fk}(\omega) = A^{fk}(\omega) M(\phi^k, D_{qt})$$

where $M(\phi^k, D_q)$ is continuous and decreasing in both ϕ^k and D_q .

- Produced under constant returns to scale using labor only
- Idiosyncratic productivity in outside sector A^o_i(ω) of laborer assigned to ω is drawn i.i.d. from Fréchet with same shape parameter θ:

$$\mathbb{P}\left\{A_i^o(\omega) \le a^o\right\} = \exp\left\{-\gamma \left(\frac{a^o}{A_i^o}\right)^{-\theta}\right\}, \quad \text{with} \quad \mathbb{E}[A_i^o(\omega)] = A_i^o(\omega)$$

- Produced under constant returns to scale using labor only
- Idiosyncratic productivity in outside sector $A_i^o(\omega)$ of laborer assigned to ω is drawn i.i.d. from Fréchet with same shape parameter θ :

$$\mathbb{P}\left\{A_i^o(\omega) \le a^o\right\} = \exp\left\{-\gamma \left(\frac{a^o}{A_i^o}\right)^{-\theta}\right\}, \quad \text{with} \quad \mathbb{E}[A_i^o(\omega)] = A_i^o(\omega)$$

• Implication: Laborer's choice between sectors and crops becomes one discrete choice problem that can be solved in closed form

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...
- Groundwater evolution: The depth D_{qt} follows the law of motion

$$D_{qt+1} = D_{qt} + \rho_q [(1 - \psi)X_{qt} - R_q], \qquad \psi \in (0, 1)$$

where

- X_{qt} is the **total extracted** from aquifer q in period t
- R_q is the **natural recharge** of aquifer q
- ρ_q is the specific yield of aquifer q (volume \rightarrow depth)
- ψ is the rate of ${\bf return}$ flow ${\rm per}$ unit extracted

Tying components together: Market structure and groundwater evolution

- All markets are perfectly competitive
- Trade:
 - outside good is freely traded and is the numeraire
 - trade in crops is subject to iceberg costs: $p_{jit}^k = \delta_{ji}^k p_{jt}^k$
 - NRA τ_{jt}^k summarizes effect of taxes/subsidies/tariffs/quotas/...
- Groundwater evolution: The depth D_{qt} follows the law of motion

$$D_{qt+1} = D_{qt} + \rho_q [(1 - \psi)X_{qt} - R_q], \qquad \psi \in (0, 1)$$

where

- X_{qt} is the **total extracted** from aquifer q in period t
- R_q is the **natural recharge** of aquifer q
- ρ_q is the specific yield of aquifer q (volume \rightarrow depth)
- + ψ is the rate of ${\bf return}$ flow per unit extracted

No dynamic choices, but the evolution of depths matters!

Utility maximization by the representative household in each country requires that

$$C_{jit}^{k} = \zeta_{i} \frac{\zeta_{i}^{k} \left(P_{it}^{k}\right)^{1-\kappa}}{\sum_{\ell \in \mathcal{K}} \zeta_{i}^{\ell} \left(P_{it}^{\ell}\right)^{1-\kappa}} \frac{\zeta_{ji}^{k} \left(\delta_{ji}^{k} p_{jt}^{k}\right)^{-\sigma}}{\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}} \quad \text{for all } i, j \in \mathcal{I}, \ k \in \mathcal{K},$$

where

$$P_{it}^{k} = \left[\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

denotes the CES price index associated with crop k in country i at time t.

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

• Total production: adding across fields & incorporating selection

$$Q_{it}^k = \sum_{f \in \mathcal{F}_i} h^f A^{fk} M(\phi^k, D_{qt}) \left(\pi_t^{fk}\right)^{\frac{\theta - 1}{\theta}}$$

Equilibrium III: Definition of competitive equilibrium

Given NRAs, $\{\tau_{it}^k\}$, and initial groundwater depths, $\{D_{q0}\}$, a competitive equilibrium is a **path** of consumption, $\{C_{jit}^k\}$, output, $\{Q_{it}^k\}$, prices, $\{p_{it}^k\}$, shares, $\{\pi_t^{fk}\}$, groundwater depths, $\{D_{qt}\}$, and groundwater extractions, $\{X_{qt}\}$, such that

- representative consumers maximize their utility;
- laborers select activities to maximize their returns;
- markets clear:

$$Q_{it}^{k} = \sum_{j \in \mathcal{I}} \delta_{ij}^{k} C_{ijt}^{k} \qquad \forall i, k, t$$
$$X_{qt} = \sum_{f \in \mathcal{F}_{q}} \sum_{k \in \mathcal{K}} h^{f} \pi_{t}^{fk} x^{fk} \qquad \forall q, t;$$

• depths obey their law of motion.

Steady state: $\{\bar{C}_{ji}^k, \bar{Q}_i^k, \bar{p}_i^k, \bar{\pi}^{fk}, \bar{D}_q, \bar{X}_q\}$ with $(1 - \psi)\bar{X}_q = R_q$

Quantification

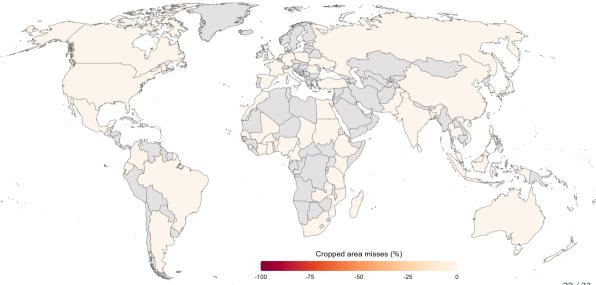
Data

For a sample of 52 countries (>97% ag. value & pop.), 22 crops, and 205 aquifers ...

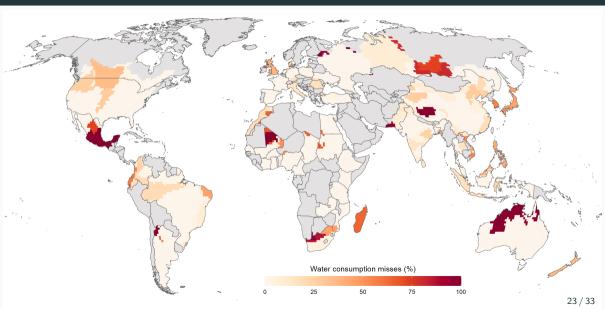
- Field-level (f): from GAEZ and EarthStat at 5-arc minute level (\sim 1.9mil grid cells)
 - $\bullet\,$ crop-specific potential yields A^{fk}
 - crop-specific cropped area fractions π^{fk}
 - area h^f
- Country-level (i): from FAOSTAT and World Bank
 - crop-specific output Q_{it}^k
 - crop-specific NRA τ^k_{it} and prices p^k_{it}
 - total cultivated land L_{it}
- Bilateral country-level (*ij*): from **UN Comtrade**
 - bilateral trade flows $E^k_{ijt} \equiv p^k_{it} \delta^k_{ij} C^k_{ijt}$
- Aquifer-level (q): from GRACE and Fan, Li, and Miguez-Macho (2013)
 - initial depths $D_{q,0}$ (\rightarrow starting **out-of-S.S.**)
 - change in total water storage $\propto \Delta D_{q,t}$

σ, κ	demand elasticities
$\{\zeta_j, \zeta_j^k, \zeta_{ij}^k\}$	demand shifters
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs
$1 - \alpha$	land share in crop production
$\{\phi^k\}$	crop-specific water intensity
θ	technological heterogeneity
$\{A^o_i\}$	mean labor prod. in outside sector
ψ	return flow rate
$\{\rho_q\}$	specific yield
$\{R_q\}$	natural recharge
$\{\Upsilon_q\}$	scale of extraction productivity
v	elasticity of extraction productivity

	σ, κ	demand elasticities	
	$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters	
	$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs	
	$1 - \alpha$	land share in crop production	-
	$\{\phi^k\}$	crop-specific water intensity	🗹 calibrated: lit & data
	θ	technological heterogeneity	🗹 calibrated: lit. & data
	$\{A^o_i\}$	mean labor prod. in outside sector	
	ψ	return flow rate	-
	$\{\rho_q\}$	specific yield	
\checkmark	$\{R_q\}$	natural recharge	
	$\{\Upsilon_q\}$	scale of extraction productivity	
V	υ	elasticity of extraction productivity	


►

σ, κ	demand elasticities	
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters	
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs	
$1 - \alpha$	land share in crop production	
$\{\phi^k\}$	crop-specific water intensity	🗹 calibrated: lit. & data
θ	technological heterogeneity	estimated: follow CDS (2016)
$\{A^o_i\}$	mean labor prod. in outside sector	estimated. Ionow CDS (2010)
ψ	return flow rate	-
$\{\rho_q\}$	specific yield	
$\{R_q\}$	natural recharge	
$\{\Upsilon_q\}$	scale of extraction productivity	
v	elasticity of extraction productivity	


	σ, κ	demand elasticities		
	$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters		
	$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs		
	$1 - \alpha$	land share in crop production	_	
	$\{\phi^k\}$	crop-specific water intensity		
	θ	technological heterogeneity	calibrated: lit. & data	
	$\{A^o_i\}$	mean labor prod. in outside sector	 ✓ estimated: follow CDS (2016) _ estimated: NLS (land & water use 	-)
	ψ	return flow rate		-)
\checkmark	$\{\rho_q\}$	specific yield		
\checkmark	$\{R_q\}$	natural recharge		
	$\{\Upsilon_q\}$	scale of extraction productivity		
	υ	elasticity of extraction productivity		

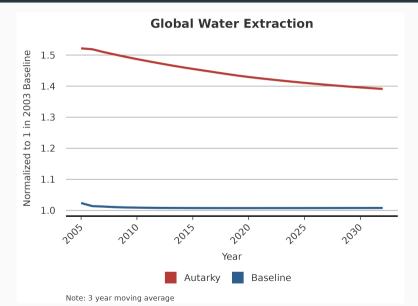
►

Model fit: Cropped area

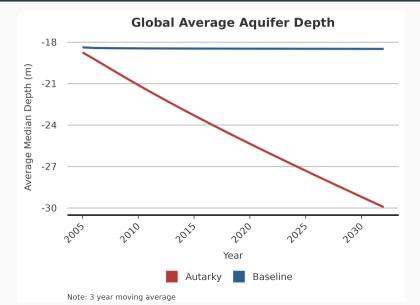
Model fit: Agricultural water extraction

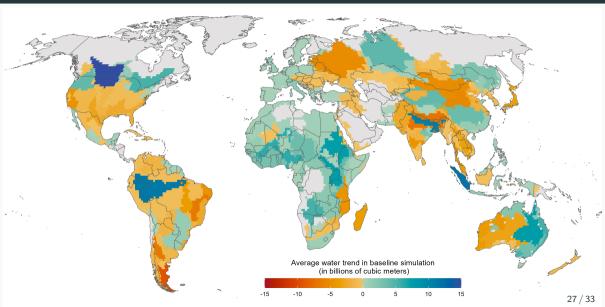

Counterfactuals

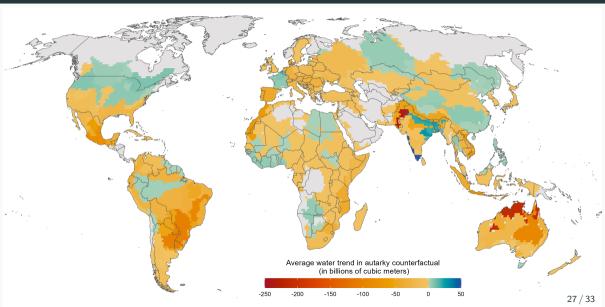
1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$ Does existing trade in agriculture improve or worsen the allocation?

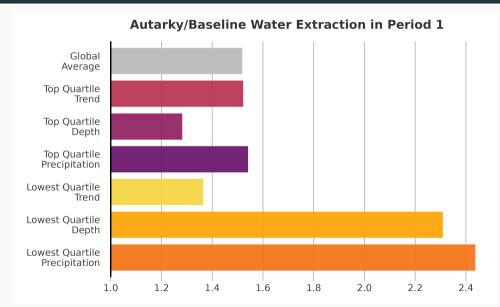

- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$ Does existing trade in agriculture improve or worsen the allocation?
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009 What are the impacts of a major historic global ag. market liberalization?

- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$ Does existing trade in agriculture improve or worsen the allocation?
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009 What are the impacts of a major historic global ag. market liberalization?
- 3. Eliminate all output market distortions—set $\tau_i^k = 1$ for all i, kDo all observed agricultural market interventions exacerbate input market failures?

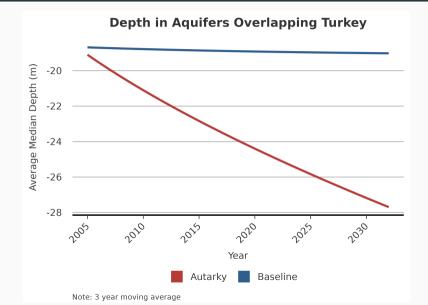

Total global cropped area nearly doubles in autarky


Total global water use also much higher in autarky

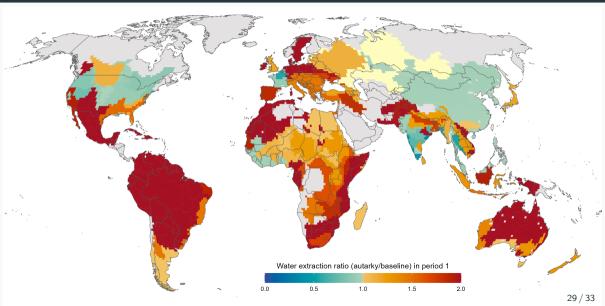

Allowing trade prevents global aquifer depletion


Allowing trade prevents extreme regional depletion...

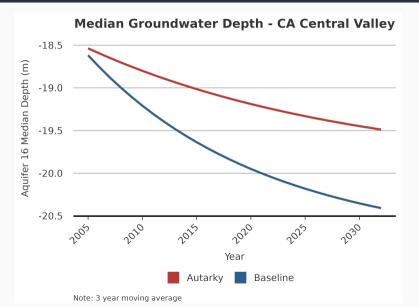
Allowing trade prevents extreme regional depletion...



... by lowering water use in water-stressed regions


28/33

Autarky causes severe water depletion for some food importers...



28/33

... but prevents severe depletion for some food exporters

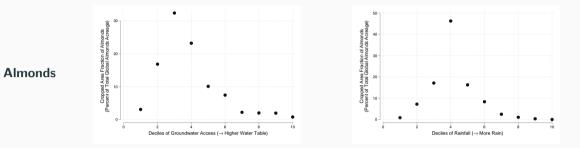
... but prevents severe depletion for some food exporters

1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$ Existing trade alleviates water stress and improves welfare, but not everywhere

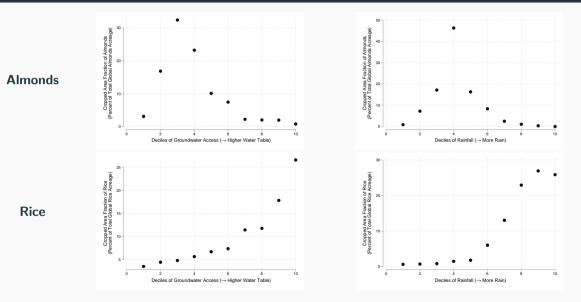
- 1. Eliminate trade in agriculture—set $\delta_{ji}^k = \infty$ for all i, j, k with $i \neq j$ Existing trade alleviates water stress and improves welfare, but not everywhere
- 2. Evaluate historical changes in output market interventions—compare allocation with τ_i^k from pre-Uruguay round of WTO negotiations (~1990) to τ_i^k from ~2009 Spatial pattern of policy changes increased water extraction and lowered welfare
- 3. Eliminate all output market distortions—set $\tau_i^k = 1$ for all i, kRemoving current distortions lowers water extraction and improves welfare

Conclusion

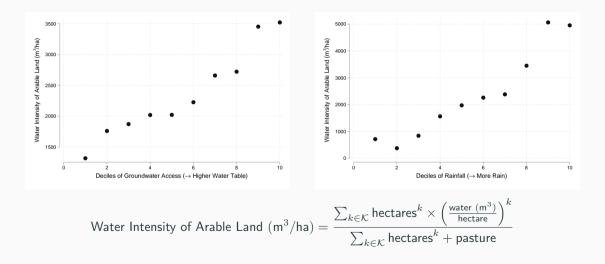
- Effects of ag. trade on water resources and long-run welfare **not ex ante obvious** with pervasive water property rights failures and ag. market distortions (**Facts 3–4**)
- Comprehensive global data show water-intensive production highly concentrated in water-abundant locations, but some unsustainably (Fact 5)
 - $\rightarrow\,$ Suggests a beneficial role for ag. trade in alleviating water stress
- Model counterfactuals show that eliminating ag. trade causes global water depletion and welfare losses over time, especially in drier food-importing regions
 - ightarrow But some historic agricultural trade/policy distortions were water-saving
 - $\rightarrow\,$ And some food exporters with poor property rights over water lose from trade

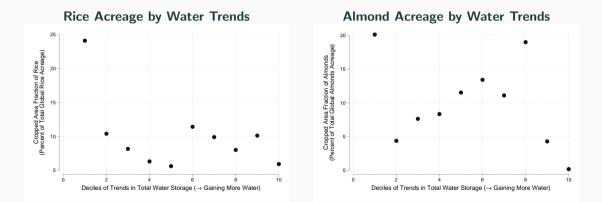

Thank you!

lgcrews@econ.ucla.edu

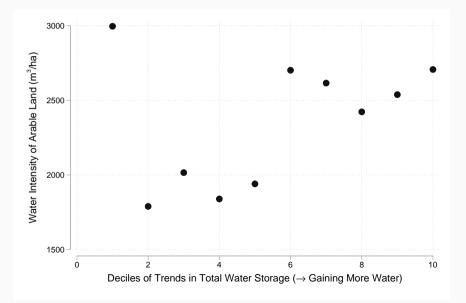

Appendix

Almonds

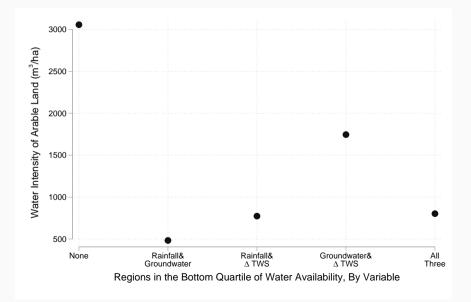

Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

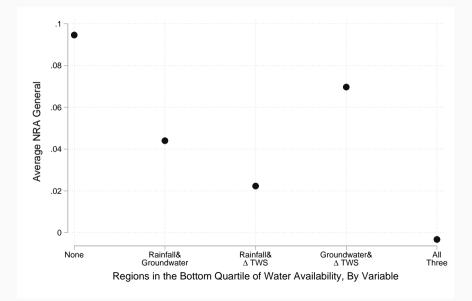


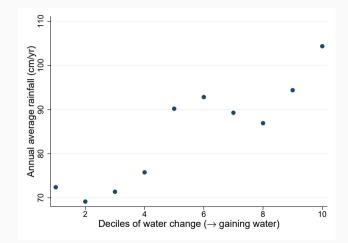
Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

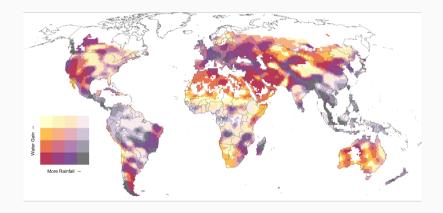


Fact 5: Water-intensive crops locate primarily in water-abundant regions ...

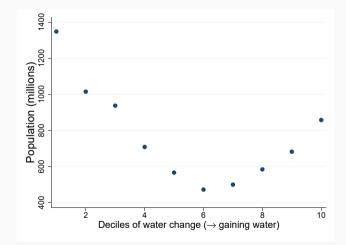



Fact 5: ... but also in some regions losing water rapidly

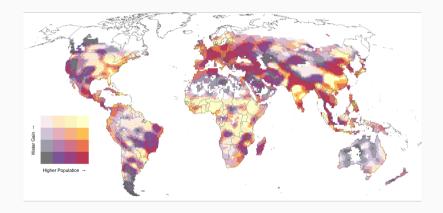

Fact 5: ... but also in some regions losing water rapidly


Fact 5: Similar patterns in water intensity and agricultural policy

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)

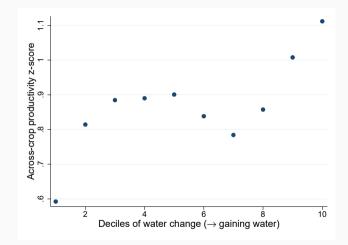


Regions losing water rapidly are disproportionately already water-scarce



Regions losing water rapidly are disproportionately already water-scarce

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)



Regions losing water rapidly are very highly populated



Regions losing water rapidly are very highly populated

Fact Aside: Characteristics of depleting regions (AEA P&P 2024)

Regions losing water rapidly have low suitability for crops

Regions losing water rapidly have low suitability for crops

Utility maximization by the representative household in each country requires that

$$C_{jit}^{k} = \zeta_{i} \frac{\zeta_{i}^{k} \left(P_{it}^{k}\right)^{1-\kappa}}{\sum_{\ell \in \mathcal{K}} \zeta_{i}^{\ell} \left(P_{it}^{\ell}\right)^{1-\kappa}} \frac{\zeta_{ji}^{k} \left(\delta_{ji}^{k} p_{jt}^{k}\right)^{-\sigma}}{\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}} \quad \text{for all } i, j \in \mathcal{I}, \ k \in \mathcal{K},$$

where

$$P_{it}^{k} = \left[\sum_{n \in \mathcal{I}} \zeta_{ni}^{k} \left(\delta_{ni}^{k} p_{nt}^{k}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

denotes the CES price index associated with crop k in country i at time t.

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{aligned} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{aligned}$$

Equilibrium II: Profit maximization and labor choice

• Each laborer ω selects the activity (outside good or crop k) that achieves

 $\max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}$

where $r_t^{fk}(\omega) = \tau_{i(f)t}^k p_{i(f)t}^k A^{fk}(\omega) M(\phi^k, D_{q(f)t})$ is his **revenue** from producing crop k

• By i.i.d. Fréchet with common shape parameter,

$$\begin{split} \pi_t^{fk} &\equiv \mathbb{P}\left\{r_t^{fk}(\omega) = \max\{A_i^o(\omega), r_t^{f1}(\omega), \dots, r_t^{fK}(\omega)\}\right\} \\ &= \frac{\left(\tau_{i(f)t}^k p_{i(f)t}^k A^{fk} M(\phi^k, D_{q(f)t})\right)^{\theta}}{\left(A_{i(f)}^o\right)^{\theta} + \sum_{\ell \in \mathcal{K}} \left(\tau_{i(f)t}^\ell p_{i(f)t}^\ell A^{f\ell} M(\phi^\ell, D_{q(f)t})\right)^{\theta}} \end{split}$$

• Total production: adding across fields & incorporating selection

$$Q_{it}^k = \sum_{f \in \mathcal{F}_i} h^f A^{fk} M(\phi^k, D_{qt}) \left(\pi_t^{fk}\right)^{\frac{\theta - 1}{\theta}}$$

Sample selection: Countries

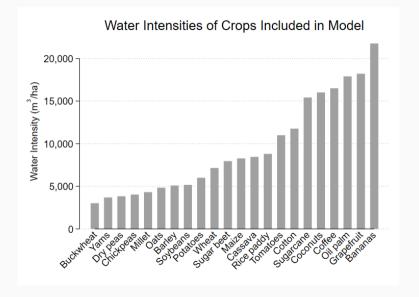
Include countries in the top 40 globally in any of...

(1) number of agricultural workers, (2) agricultural production, or (3) total population

Sample selection: Countries

Resulting sample has **52 countries** that cover...

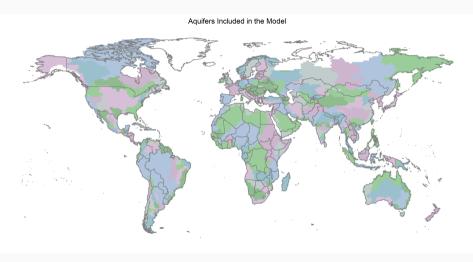
99% of ag. workers, 97% of ag. production value, 97% of population, and 94% of GDP



Include high-value and staples (global and regional) + span water intensities | in GAEZ (38)

Resulting sample has 22 crops covering 56% of global value and 59% of global water use

- high-value + global staples: wheat, rice, maize, soybeans, sugarcane, cotton, potatoes, tomatoes, oil palm, bananas (Costinot, Donaldson, and Smith, 2016)
- regional staples: cassava, sorghum, millet, barley, sugar beets
- high water-intensity crops: coffee, grapefruit, coconuts
- low water-intensity crops: yams, buckwheat, chickpeas, dry peas


Sample selection: Crops

Include 37 aquifers (WHYMAP), then cluster GRACE grid cells s.t. 180 water basins (NASA)

Sample selection: Aquifers

Partition land area into 278 "aquifers," of which 205 intersect chosen countries

Parameters to be calibrated/estimated

σ, κ	demand elasticities	
$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters	
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs	
$1 - \alpha$	land share in crop production	
$\{\phi^k\}$	crop-specific water intensity	
θ	technological heterogeneity	
$\{A^o_i\}$	mean labor prod. in outside sector	
ψ	return flow rate	
$\{\rho_q\}$	specific yield	
$\{R_q\}$	natural recharge	
$\{\Upsilon_q\}$	scale of extraction productivity	
v	elasticity of extraction productivity	

Parameter		Value	Source
land share	$1 - \alpha$	0.25	Boppart et al. (2019)
return flow rate	ψ	0.25	Dewandel et al. (2008)
extraction elasticity	v	1.0	Burlig, Preonas, and Woerman (2021)
water intensity	$\{\phi^k\}$		convert from Mekonnen and Hoekstra (2011)
specific yield	$\{\rho_q\}$		s.y. by soil type (Loheide, Butler, and Gorelick, 2005)
			soil type (Hengl et al., 2017)
natural recharge	$\{R_q\}$		residual of avg. ΔTWS from NASA's GRACE data
			& implied water use based on $\{\phi^k\}$ and obs. $\{\pi^{fk}\}$
			from SAGE (Monfreda, Ramankutty, and Foley, 2008)

Parameters to be calibrated/estimated

σ, κ	demand elasticities	
$\{\zeta_j, \zeta_j^k, \zeta_{ij}^k\}$	demand shifters	
$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs	
$1 - \alpha$	land share in crop production	-
$\{\phi^k\}$	crop-specific water intensity	🗹 calibrated: lit & data
θ	technological heterogeneity	🗹 calibrated: lit. & data
$\{A^o_i\}$	mean labor prod. in outside sector	
ψ	return flow rate	-
$\{\rho_q\}$	specific yield	
$\{R_q\}$	natural recharge	
$\{\Upsilon_q\}$	scale of extraction productivity	
v	elasticity of extraction productivity	

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

3. That regression identifies $\sigma,$ and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

2. If positive, run IV on

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

1. If zero trade flow, set $\zeta_{ij}^k (\delta_{ij}^k)^{1-\sigma} = 0$

 $2.\ \mbox{If positive, run IV on}$

$$\ln(E_{ij}^k/E_j^k) = \mathsf{FE}_j^k + (1-\sigma)\ln\left(p_i^k\right) + \epsilon_{ij}^k$$

under the normalization that the shocks sum to zero, with instrument

$$Z_i^k \equiv \ln\left(\frac{1}{F_i}\sum_{f\in\mathcal{F}_i}A_i^{fk}\right)$$

 \implies variation in p_i^k independent of preferences and trade costs

- 3. That regression identifies σ , and we set $\ln[\zeta_{ij}^k(\delta_{ij}^k)^{1-\sigma}] \equiv \epsilon_{ij}^k$
- 4. Construct P_j^k from the price data and previous estimate. Repeat 1–3 at the mid-tier (across crops) to identify κ and construct ζ_j^k , using Z_j^k to instrument for P_j^k
- 5. ζ_j is just the value of expenditure on agricultural goods by j

Absorb all extra variation in taste imes trade cost parameters \implies exactly match demand side

Parameters to be calibrated/estimated

✓ ✓ ✓	σ , κ $\{\zeta_j, \zeta_j^k, \zeta_{ij}^k\}$ $\{\delta_{ij}^k\}$	demand elasticities demand shifters bilateral crop-specific trade costs		
	$\begin{array}{c} 1-\alpha \\ \{\phi^k\} \\ \theta \\ \{A^o_i\} \end{array}$	land share in crop production crop-specific water intensity technological heterogeneity mean labor prod. in outside sector	 calibrated: lit estimated: fo	
	$\psi \ \{ ho_q\} \ \{R_q\} \ \{\Upsilon_q\} \ \psi$	return flow rate specific yield natural recharge scale of extraction productivity elasticity of extraction productivity		

calibrated: lit. & data
 estimated: follow CDS (2016)

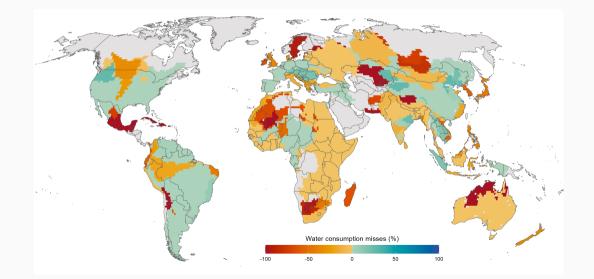
Estimate θ , $\{A_i^o\}$, and $\{\Upsilon_q\}$ jointly via **nonlinear least squares** (NLS):

$$\min_{\theta, \{A_i^o\}, \{\Upsilon_q\}} \sum_i \sum_k \left[\ln Q_i^k(\theta, \{A_i^o\}, \{\Upsilon_q\}) - \ln Q_i^k \right]^2 \text{ s.t. } X_q = X_q(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall q$$

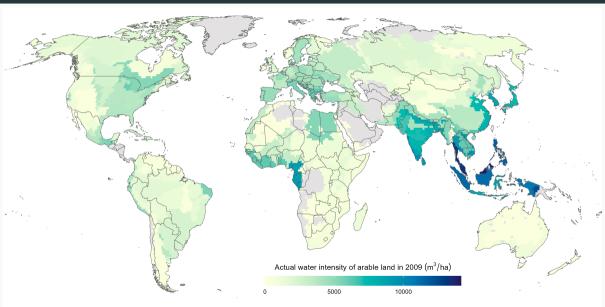
$$L_i = L_i(\theta, \{A_i^o\}, \{\Upsilon_q\}), \quad \forall i$$

where *observed* extraction is

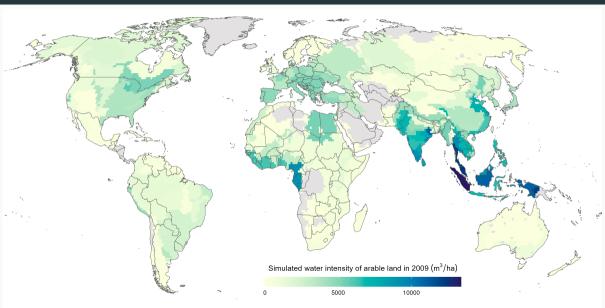
$$X_q \coloneqq \sum_{f \in \mathcal{F}_q} \sum_{k \in \mathcal{K}} h^f \pi^{fk} \phi^k$$


Intuition for identification

- Share of non-cultivated land \leftrightarrow non-agricultural labor productivity
- Water extracted \leftrightarrow labor productivity of extraction
- $\bullet\,$ Cross-parcel dispersion in productivity $\leftrightarrow\,$ cross-crop dispersion in output


Parameters to be calibrated/estimated

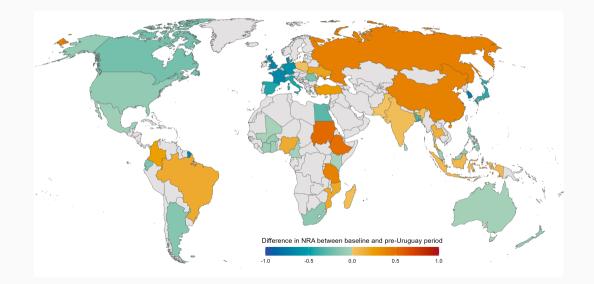
	σ, κ	demand elasticities	
	$\{\zeta_j,\zeta_j^k,\zeta_{ij}^k\}$	demand shifters	
	$\{\delta_{ij}^k\}$	bilateral crop-specific trade costs	
\checkmark	$1 - \alpha$	land share in crop production	
	$\{\phi^k\}$	crop-specific water intensity	- liberate de lite O data
	θ	technological heterogeneity	calibrated: lit. & data
	$\{A^o_i\}$	mean labor prod. in outside sector	estimated: follow CDS (2016) estimated: NLS (land & water use)
	ψ	return flow rate	
	$\{\rho_q\}$	specific yield	
	$\{R_q\}$	natural recharge	
	$\{\Upsilon_q\}$	scale of extraction productivity	
	υ	elasticity of extraction productivity	


Model fit: Agricultural water extraction

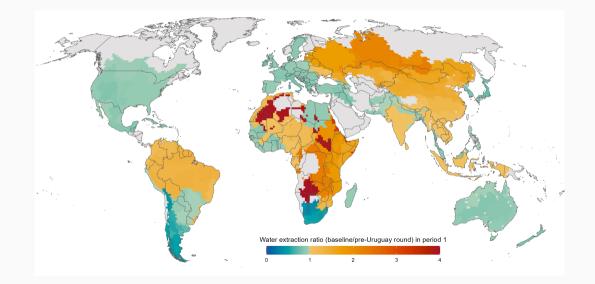
Model fit: Agricultural water extraction (target)

Model fit: Agricultural water extraction (simulated)

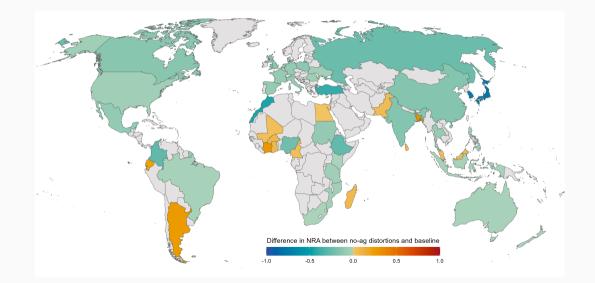
Model validation: Water extraction productivity

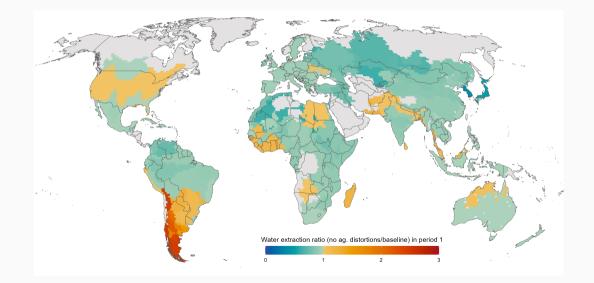

Table 1: Partial Correlations of Aquifer-Level Covariates, Impact of Depth on Extraction Productivity (Υ_q) , and Extraction Productivity $(A_q^w(D_{qt}))$

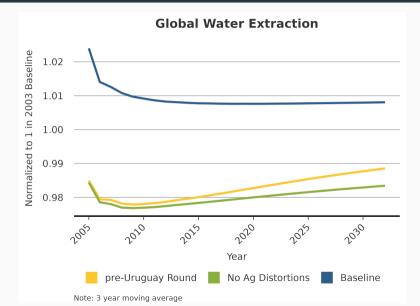
	Dependent Variable	
	$\log(\Upsilon)$	$\log(A_q^w(D_{qt}))$
Precipitation	0.64**	0.54*
	(0.25)	(0.28)
$Precipitation^2$	-0.11**	-0.08**
	(0.03)	(0.03)
Temperature	0.26***	0.17***
	(0.04)	(0.05)
$Temperature^2$	-0.004***	-0.003*
	(0.001)	(0.002)
Area irrigated (%)	0.10*	0.10^{*}
	(0.05)	(0.05)
Nighttime luminosity	0.20***	0.18^{**}
	(0.07)	(0.01)
Surface water area (%)	-0.02**	-0.02*
	(0.01)	(0.01)
Groundwater depth (m)		0.04***
		(0.01)
R^2	0.56	0.40


2. 1994 Uruguay Round of WTO Negotiations: Largest global ag. liberalization

- Prior trade agreements (GATT) largely excluded agriculture
- "Tariffication" of non-tariff barriers to agricultural trade with maximum tariff rates imposed
- Implementation: set $\tau_i^k = 1 + \text{avg.}$ from Uruguay Round (1986-1994)
- 3. **Removal of current output market distortions:** Smaller but significant distortions remain despite multi- and bi-lateral trade agreements
 - Implementation: set $\tau_i^k = 1$ for all i, k


Uruguay Round lowered subsidies in the north, raised them in the south


Uruguay Round increased water extraction in the south


Removing current distortions lowers subsidies to ag. nearly everywhere

Removing current distortions lowers water extraction nearly everywhere

Global water extraction falls under both counterfactual policies

References

- Anderson, Kym, Gordon Rausser, and Johan Swinnen. 2013. "Political economy of public policies: Insights from distortions to agricultural and food markets." *Journal of Economic Literature* 51 (2):423–77.
- Ayres, Andrew B., Kyle C. Meng, and Andrew J. Plantinga. 2021. "Do environmental markets improve on open access? Evidence from California groundwater rights." *Journal of Political Economy* 121 (10).
- Berrittella, Maria, Katrin Rehdanz, Richard S. J. Tol, and Jian Zhang. 2008. "The impact of trade liberalization on water use: A computable general equilibrium analysis." *Journal of Economic Integration* :631–655.
- Boppart, Timo, Patrick Kiernan, Per Krusell, and Hannes Malmberg. 2019. "The macroeconomics of intensive agriculture."
- Brander, James A. and M. Scott Taylor. 1997. "International trade and open-access renewable resources: The small open economy case." *Canadian Journal of Economics* 30 (3):526.
- Bruno, Ellen M. and Katrina Jessoe. 2021. "Missing markets: Evidence on agricultural groundwater demand from volumetric pricing." *Journal of Public Economics* 196.
- Burlig, Fiona, Louis Preonas, and Matt Woerman. 2021. "Energy, groundwater, and crop choice." National Bureau of Economic Research, Working Paper 28706.

Carleton, Tamma. 2021. "The global water footprint of distortionary agricultural policy."

- Carr, Joel A., Paolo D'Odorico, Francesco Laio, and Luca Ridolfi. 2013. "Recent history and geography of virtual water trade." *PLoS ONE* 8 (2).
- Chichilnisky, Graciela. 1994. "North-south trade and the global environment." *American Economic Review* 84 (4):851–874.
- Copeland, Brian R., Joseph S. Shapiro, and M. Scott Taylor. 2022. "Globalization and the environment." In *Handbook of International Economics*, vol. 5, edited by Gita Gopinath, Elhanan Helpman, and Kenneth Rogoff, chap. 2. Elsevier, 61–146.
- Costinot, Arnaud, Dave Donaldson, and Cory Smith. 2016. "Evolving comparative advantage and the impact of climate change in agricultural markets: Evidence from 1.7 million fields around the world." *Journal of Political Economy* 124 (1):205–248.
- Debaere, Peter. 2014. "The global economics of water: Is water a source of comparative advantage?" *American Economic Journal: Applied Economics* 6 (2):32–48.
- Dewandel, B., J.-M. Gandolfi, D. de Condappa, and S. Ahmed. 2008. "An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale." *Hydrological Processes* 22 (11):1700–1712.

d'Odorico, Paolo, Joel Carr, Carole Dalin, Jampel Dell'Angelo, Megan Konar, Francesco Laio, Luca Ridolfi, Lorenzo Rosa, Samir Suweis, Stefania Tamea, and Marta Tuninetti. 2019.
"Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts." *Environmental Research Letters* 14 (5).

- Fan, Y., H. Li, and G. Miguez-Macho. 2013. "Global patterns of groundwater table depth." *Science* 339 (6122):940–943.
- Farrokhi, Farid, Elliot Kang, Heitor S. Pellegrina, and Sebastian Sotelo. 2023. "Deforestation: A global and dynamic perspective."
- Hengl, Tomislav, Jorge Mendes de Jesus, Gerard B. M. Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, Aleksandar Blagotić, Wei Shangguan, Marvin N. Wright, Xiaoyuan Geng, Bernhard Bauer-Marschallinger, Mario Antonio Guevara, Rodrigo Vargas, Robert A.
 MacMillan, Niels H. Batjes, Johan G. B. Leenaars, Eloi Ribeiro, Ichsani Wheeler, Stephan Mantel, and Bas Kempen. 2017. "SoilGrids250m: Global gridded soil information based on machine learning." *PLOS ONE* 12 (2).

Hoekstra, Arjen Y. and Mesfin M. Mekonnen. 2012. "The water footprint of humanity." *Proceedings of the National Academy of Sciences* 109 (9):3232–3237.

- Loheide, Steven P., James J. Butler, and Steven M. Gorelick. 2005. "Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment." *Water Resources Research* 41 (7).
- Mekonnen, M. M. and A. Y. Hoekstra. 2011. "The green, blue and grey water footprint of crops and derived crop products." *Hydrology and Earth System Sciences* 15 (5):1577–1600.
- Monfreda, Chad, Navin Ramankutty, and Jonathan A. Foley. 2008. "Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000." *Global Biogeochemical Cycles* 22 (1).
- Rafey, Will. 2023. "Droughts, deluges, and (river) diversions: Valuing market-based water reallocation." *American Economic Review* 113 (2):430–471.
- Sekhri, Sheetal. 2022. "Agricultural trade and depletion of groundwater." *Journal of Development Economics* 156.