TA Session: Computational Dynamic Programming

Econ 30400: Mathematical Methods for Economics

Levi Crews (Chicago)
September 2020

A simple consumption-saving problem

An agent with CRRA utility and an initial wealth endowment wy maximizes the
lifetime value of her consumption stream {c¢;} discounted at rate 3 subject to an
exogenous interest rate 7:

) = S

sit. wip = (14 7)(we — ¢p)

2/9

Let’s put this in recursive form

Sequential

1 o

= r?afZBt ot sit. wip1 = (L4 7)(we — ¢p)
Ct

Recursive
+ Bv(w’) st. w' =(1+7)(w—-c)

v(w) = max -——

3/9

This problem has a closed-form solution

Recall that a solution here is

e a value function v(-) that satisfies
the Bellman equation, and

e a policy function ¢(-) that attains

the maximum,

where both are functions of the state

variable w.

4/9

This problem has a closed-form solution

We can solve this particular problem

by the guess-and-verify method:
Recall that a solution here is

e a value function v(-) that satisfies v(w) = vow' =7
the Bellman equation, and c(w) = cow,
e a policy function ¢(-) that attains
. where
the maximum,
where both are functions of the state vo = (1 t 7")(1 —)
variable w. AL +7r)(1 = a)eo
B+)7
co=1—-——
147

4/9

But what if there’'s no closed-form solution?

By the contraction mapping theorem,
we can compute v by successive
approximations: the sequence

{vk} s.t. vgy1 = Ty
v € C(R)

T = Bellman operator

converges to v at rate (3

5/9

But what if there’'s no closed-form solution?

By the contraction mapping theorem,

we can compute v by successive Four types of approximations:
approximations: the sequence 1. Value function iteration
a. exogenous grid search
{v} st vkgr =T b. interpolation
v9 € C(R) 2. Policy function iteration
T = Bellman operator a. exogenous grid search

b. endogenous grid search

converges to v at rate (3

5/9

la. Value function iteration (exogenous grid)

Discretize the state space: W = [wy, ..., wy]" for some large N
Guess any vg = [vp(wy), - .., vo(wy)]" (why? but are some better?)
Compute u(wy, wy,) = payoff when current state is w,, and next state is wy,

Compute vg11(wy) = maxy,, ew [u(wy, W) + Bug(wy,)] for each w,, € W

S R

Stop when ||vg11 — vi|| < € for some tolerance level e

Why it works: follows directly from contraction mapping theorem
Pros: easy to implement, fast for low-dim state space and small IV

Cons: slow for high-dim state space and large IV

6/9

1b. Value function iteration (interpolation)

1.
2.
8
4.
5.

Discretize the state space: W = [wy, ..., wy]" for some large N

Guess any vy = [vo(w1), ..., vo(wn)]’

Compute the function vy by interpolating {vi(wy) }w, ew

Compute vg41(wy) = maxc[u(c) + Sog((1 + 7)(wy, — ¢))] for each w, € W

Stop when ||vg11 — vg|| < € for some tolerance level e

Why it works: follows directly from contraction mapping theorem
Pros: faster than grid search for high-dim state space and large N (why?)

Cons: extra work to interpolate

7/9

2a. Policy function iteration (exogenous grid)

1.
2.
8
4.
Be

Discretize the state space: W = [wy, ..., wy]’ for some large N

’ (why? but are some better?)

Guess any ¢y = [co(w1), ..., co(wn)]
Compute the function ¢é; by interpolating {cx(wn) }w, ew
Compute cr1(wy,) = arg {u/(¢) — B(1 4+ r)u/[éx((1 + 7)(w, — ¢))] = 0}

Stop when ||cix4+1 — ck|| < € for some tolerance level €

Why it works: envelope theorem, contraction mapping theorem
Pros: faster than value function iteration

Cons: smaller scope (need concavity, differentiability)

8/9

2b. Policy function iteration (endogenous grid)

Discretize the state space: W = [wy, ..., wy]’ for some large N
Guess any ¢y = [co(w1), ..., co(wn)]
Compute cpq1(,) = (/)T [B(1 + r)u/ (e (wn))] and @y = {52 + cpq1(Wn)

Interpolate values {ci11(wy) b, ew

&> WY =

Stop when ||cix4+1 — ck|| < € for some tolerance level €
Why it works: as above + Euler equation, budget constraint
c= W) BA+N()], W' =1+7)(w—c)

Pros: faster than exogenous grid because it's slow to solve for cj1(wy,)

Cons: even smaller scope (need u’ invertible, too)

9/9

