
TA Session: Computational Dynamic Programming

Econ 30400: Mathematical Methods for Economics

Levi Crews (Chicago)

September 2020

A simple consumption-saving problem

An agent with CRRA utility and an initial wealth endowment w0 maximizes the

lifetime value of her consumption stream {ct} discounted at rate β subject to an

exogenous interest rate r:

v(w0) = max
{ct}

∞∑
t=0

βt
c1−σt

1− σ
s.t. wt+1 = (1 + r)(wt − ct)

2 / 9

Let’s put this in recursive form

Sequential

v(w0) = max
{ct}

∞∑
t=0

βt
c1−σt

1− σ
s.t. wt+1 = (1 + r)(wt − ct)

Recursive

v(w) = max
c

c1−σ

1− σ
+ βv(w′) s.t. w′ = (1 + r)(w − c)

3 / 9

This problem has a closed-form solution

Recall that a solution here is

• a value function v(·) that satisfies

the Bellman equation, and

• a policy function c(·) that attains

the maximum,

where both are functions of the state

variable w.

We can solve this particular problem

by the guess-and-verify method:

v(w) = v0w
1−σ

c(w) = c0w,

where

v0 =
(1 + r)(1− c0)
β(1 + r)(1− σ)c0

c0 = 1− (β(1 + r))1/σ

1 + r
.

4 / 9

This problem has a closed-form solution

Recall that a solution here is

• a value function v(·) that satisfies

the Bellman equation, and

• a policy function c(·) that attains

the maximum,

where both are functions of the state

variable w.

We can solve this particular problem

by the guess-and-verify method:

v(w) = v0w
1−σ

c(w) = c0w,

where

v0 =
(1 + r)(1− c0)
β(1 + r)(1− σ)c0

c0 = 1− (β(1 + r))1/σ

1 + r
.

4 / 9

But what if there’s no closed-form solution?

By the contraction mapping theorem,

we can compute v by successive

approximations: the sequence

{vk} s.t. vk+1 = Tvk

v0 ∈ C(R)
T ≡ Bellman operator

converges to v at rate β

Four types of approximations:

1. Value function iteration

a. exogenous grid search

b. interpolation

2. Policy function iteration

a. exogenous grid search

b. endogenous grid search

5 / 9

But what if there’s no closed-form solution?

By the contraction mapping theorem,

we can compute v by successive

approximations: the sequence

{vk} s.t. vk+1 = Tvk

v0 ∈ C(R)
T ≡ Bellman operator

converges to v at rate β

Four types of approximations:

1. Value function iteration

a. exogenous grid search

b. interpolation

2. Policy function iteration

a. exogenous grid search

b. endogenous grid search

5 / 9

1a. Value function iteration (exogenous grid)

1. Discretize the state space: W ≡ [w1, . . . , wN]
′ for some large N

2. Guess any v0 = [v0(w1), . . . , v0(wN)]
′ (why? but are some better?)

3. Compute u(wn, wm) ≡ payoff when current state is wn and next state is wm

4. Compute vk+1(wn) ≡ maxwm∈W [u(wn, wm) + βvk(wm)] for each wn ∈W
5. Stop when ||vk+1 − vk|| < ε for some tolerance level ε

Why it works: follows directly from contraction mapping theorem

Pros: easy to implement, fast for low-dim state space and small N

Cons: slow for high-dim state space and large N

6 / 9

1b. Value function iteration (interpolation)

1. Discretize the state space: W ≡ [w1, . . . , wN]
′ for some large N

2. Guess any v0 = [v0(w1), . . . , v0(wN)]
′

3. Compute the function v̂k by interpolating {vk(wn)}wn∈W

4. Compute vk+1(wn) ≡ maxc[u(c) + βv̂k((1 + r)(wn − c))] for each wn ∈W
5. Stop when ||vk+1 − vk|| < ε for some tolerance level ε

Why it works: follows directly from contraction mapping theorem

Pros: faster than grid search for high-dim state space and large N (why?)

Cons: extra work to interpolate

7 / 9

2a. Policy function iteration (exogenous grid)

1. Discretize the state space: W ≡ [w1, . . . , wN]
′ for some large N

2. Guess any c0 = [c0(w1), . . . , c0(wN)]
′ (why? but are some better?)

3. Compute the function ĉk by interpolating {ck(wn)}wn∈W

4. Compute ck+1(wn) ≡ argc{u′(c)− β(1 + r)u′[ĉk((1 + r)(wn − c))] = 0}
5. Stop when ||ck+1 − ck|| < ε for some tolerance level ε

Why it works: envelope theorem, contraction mapping theorem

Pros: faster than value function iteration

Cons: smaller scope (need concavity, differentiability)

8 / 9

2b. Policy function iteration (endogenous grid)

1. Discretize the state space: W ≡ [w1, . . . , wN]
′ for some large N

2. Guess any c0 = [c0(w1), . . . , c0(wN)]
′

3. Compute ck+1(w̃n) = (u′)−1[β(1 + r)u′(ck(wn))] and w̃n = wn
1+r + ck+1(w̃n)

4. Interpolate values {ck+1(wn)}wn∈W

5. Stop when ||ck+1 − ck|| < ε for some tolerance level ε

Why it works: as above + Euler equation, budget constraint

c = (u′)−1[β(1 + r)u′(c′)], w′ = (1 + r)(w − c)

Pros: faster than exogenous grid because it’s slow to solve for ck+1(wn)

Cons: even smaller scope (need u′ invertible, too)

9 / 9

