TA Session: Computational Dynamic Programming

Econ 30400: Mathematical Methods for Economics

Levi Crews (Chicago) September 2020 An agent with CRRA utility and an initial wealth endowment w_0 maximizes the lifetime value of her consumption stream $\{c_t\}$ discounted at rate β subject to an exogenous interest rate r:

$$v(w_0) = \max_{\{c_t\}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
 s.t. $w_{t+1} = (1+r)(w_t - c_t)$

Sequential

$$v(w_0) = \max_{\{c_t\}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
 s.t. $w_{t+1} = (1+r)(w_t - c_t)$

Recursive

$$v(w) = \max_{c} \frac{c^{1-\sigma}}{1-\sigma} + \beta v(w')$$
 s.t. $w' = (1+r)(w-c)$

Recall that a solution here is

- a value function $v(\cdot)$ that satisfies the Bellman equation, and
- a policy function $c(\cdot)$ that attains the maximum,

where both are functions of the state variable w.

We can solve this particular problem by the guess-and-verify method:

$$v(w) = v_0 w^{1-\sigma}$$
$$c(w) = c_0 w,$$

where

$$v_0 = \frac{(1+r)(1-c_0)}{\beta(1+r)(1-\sigma)c_0}$$
$$c_0 = 1 - \frac{(\beta(1+r))^{1/\sigma}}{1+r}.$$

Recall that a solution here is

- a value function $v(\cdot)$ that satisfies the Bellman equation, and
- a policy function $c(\cdot)$ that attains the maximum,

where both are functions of the state variable w.

We can solve this particular problem by the guess-and-verify method:

$$v(w) = v_0 w^{1-\sigma}$$
$$c(w) = c_0 w,$$

where

$$v_0 = \frac{(1+r)(1-c_0)}{\beta(1+r)(1-\sigma)c_0}$$
$$c_0 = 1 - \frac{(\beta(1+r))^{1/\sigma}}{1+r}$$

By the contraction mapping theorem,

we can compute v by successive approximations: the sequence

$$\{v_k\}$$
 s.t. $v_{k+1} = Tv_k$
 $v_0 \in C(\mathbb{R})$
 $T \equiv$ Bellman operator

converges to v at rate β

Four types of approximations:

- 1. Value function iteration
 - a. exogenous grid search
 - b. interpolation
- 2. Policy function iteration
 - a. exogenous grid search
 - b. endogenous grid search

By the contraction mapping theorem,

we can compute v by successive approximations: the sequence

$$\{v_k\}$$
 s.t. $v_{k+1} = Tv_k$
 $v_0 \in C(\mathbb{R})$
 $T \equiv$ Bellman operator

converges to v at rate β

Four types of approximations:

- 1. Value function iteration
 - a. exogenous grid search
 - b. interpolation
- 2. Policy function iteration
 - a. exogenous grid search
 - b. endogenous grid search

- 1. Discretize the state space: $W\equiv [w_1,\ldots,w_N]'$ for some large N
- 2. Guess any $v_0 = [v_0(w_1), \ldots, v_0(w_N)]'$ (why? but are some better?)
- 3. Compute $u(w_n,w_m)\equiv$ payoff when current state is w_n and next state is w_m
- 4. Compute $v_{k+1}(w_n) \equiv \max_{w_m \in W} [u(w_n, w_m) + \beta v_k(w_m)]$ for each $w_n \in W$
- 5. Stop when $||v_{k+1} v_k|| < \epsilon$ for some tolerance level ϵ

Why it works: follows directly from contraction mapping theorem Pros: easy to implement, fast for low-dim state space and small NCons: slow for high-dim state space and large N

- 1. Discretize the state space: $W\equiv [w_1,\ldots,w_N]'$ for some large N
- 2. Guess any $v_0 = [v_0(w_1), \dots, v_0(w_N)]'$
- 3. Compute the function \hat{v}_k by interpolating $\{v_k(w_n)\}_{w_n \in W}$
- 4. Compute $v_{k+1}(w_n) \equiv \max_c [u(c) + \beta \hat{v}_k((1+r)(w_n-c))]$ for each $w_n \in W$
- 5. Stop when $||v_{k+1} v_k|| < \epsilon$ for some tolerance level ϵ

Why it works: follows directly from contraction mapping theorem Pros: faster than grid search for high-dim state space and large N (why?) Cons: extra work to interpolate

- 1. Discretize the state space: $W \equiv [w_1, \ldots, w_N]'$ for some large N
- 2. Guess any $c_0 = [c_0(w_1), \ldots, c_0(w_N)]'$ (why? but are some better?)
- 3. Compute the function \hat{c}_k by interpolating $\{c_k(w_n)\}_{w_n \in W}$
- 4. Compute $c_{k+1}(w_n) \equiv \arg_c \{ u'(c) \beta(1+r)u'[\hat{c}_k((1+r)(w_n-c))] = 0 \}$
- 5. Stop when $||c_{k+1} c_k|| < \epsilon$ for some tolerance level ϵ

Why it works: envelope theorem, contraction mapping theorem Pros: faster than value function iteration

Cons: smaller scope (need concavity, differentiability)

2b. Policy function iteration (endogenous grid)

1. Discretize the state space: $W\equiv [w_1,\ldots,w_N]'$ for some large N

2. Guess any
$$c_0 = [c_0(w_1), \dots, c_0(w_N)]'$$

- 3. Compute $c_{k+1}(\tilde{w}_n) = (u')^{-1}[\beta(1+r)u'(c_k(w_n))]$ and $\tilde{w}_n = \frac{w_n}{1+r} + c_{k+1}(\tilde{w}_n)$
- 4. Interpolate values $\{c_{k+1}(w_n)\}_{w_n \in W}$
- 5. Stop when $||c_{k+1} c_k|| < \epsilon$ for some tolerance level ϵ

Why it works: as above + Euler equation, budget constraint

$$c = (u')^{-1}[\beta(1+r)u'(c')], \qquad w' = (1+r)(w-c)$$

Pros: faster than exogenous grid because it's slow to solve for $c_{k+1}(w_n)$ **Cons:** even smaller scope (need u' invertible, too)