TA Session: Ordinary Differential Equations
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e Rising fourth-year PhD in the economics department
e Focused on macro, trade, and quantitative spatial models

e Email: 1gcrews@uchicago.edu
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lgcrews@uchicago.edu

A bit about this class

Math camp at many other programs: a mandatory class that you must pass;
ensures that you have the minimum required mathematical knowledge to survive the

first-year curriculum

Math camp here: an optional, highly-concentrated preview of all the mathematical
tools you could need to ace the first-year curriculum

e you don't need to know everything we cover!
e most of what you will need will be covered again in your core classes

e don’t get overwhelmed, don't get distracted
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What we’ll cover in TA sessions

Sept.
Sept.
Sept.
Sept.

14 (Monday): ODEs following Barro & Sala-i-Martin (2004, A.1)
15 (Tuesday): continue with ODEs

16 (Wednesday): computational dynamic programming

17 (Thursday): continue with computational DP
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Let’s dive in!



o differential equation: relates an unknown function to its derivatives

e ordinary: only one unknown function
S=36-»)
e partial: more than one unknown function
pv(a, z,t) = max u(c) + [z + ra — c]0,v(a, z,t) + u(z)0,v(a, z,t)
+ %UQ(Z)azzv(a, z,t) + Ov(a, z,t)
e order: of an ODE, the order of its highest derivative

e N.b. can always rewrite an nth-order ODE as system of first-order ODE
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A simple taxonomy of ODEs

Consider the ODE
ai(t) - 9(t) + az(t) - y(t) +z(t) = 0. (1)
This is a linear, first-order ODE. If ...

e a;(t) = aj for j = 1,2, then (1) has constant coefficients;
e further, z(t) = ag, then (1) is autonomous;

e even further, z(t) = 0, then (1) is homogeneous.

An example of a nonlinear, first-order ODE is

. I
In [g(t)] + Ol 0.
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Solving ODEs

Objective: Find the behavior of y(t).

Solution methods:

e Graphical. Draw proto-phase diagram, which works for both linear and nonlinear
ODES, but only autonomous ones.

e Analytical. Find exact formula for y(t), but only for a limited set of functional
forms (including linear) = can approximate nonlinear by linearizing.

e Numerical. Try ODE solvers from Matlab, Julia, and/or Python packages.
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Graphical: proto-phase diagrams

Consider an autonomous ODE

where f may or may not be linear.
Now plot f as a function of y.
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Graphical: proto-phase diagrams

Consider an autonomous ODE

where f may or may not be linear. Unstable .

Now plot f as a function of y. Y

. 9y
e locally unstable: 77|,- > 0

Arrows show direction that y moves over time
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Graphical: proto-phase diagrams

Consider an autonomous ODE

where f may or may not be linear. Stable

Now plot f as a function of . ¥

. 9y
e locally stable: 7|, <0

Arrows show direction that y moves over time
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Graphical: proto-phase diagrams

Consider an autonomous ODE

Stuble steady state
= ¥

where f may or may not be linear.

-~ v ¥
Unstable
steady state

Now plot f as a function of y.

e Solow-Swan model: one of each!

Arrows show direction that y moves over time
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Analytical: Linear, first-order ODE with coefficients

0=y(t)+a-y(t)+z(t)

Steps:

1. Separate variables

2. Multiply by integrating factor e and integrate

3. By FTC, we know RHS; by definition of x(¢) we can compute LHS, call it X (¢)
4. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=9(t) +a-y(t) + ()

Steps:

1. Separate variables

—z(t) = y(t) + a - y(t)
2. Multiply by integrating factor e and integrate
3. By FTC, we know RHS; by definition of z(¢) we can compute LHS, call it X (¢)
4. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=g(t)+a-y(t)+z()

Steps:

1. Separate variables

2. Multiply by integrating factor e and integrate

—/eat-x(t) dt = /e‘” yt) +a-y(t) dt
3. By FTC, we know RHS; by definition of x(¢) we can compute LHS, call it X ()
4. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=9(t) +a-y(t) + ()

Steps:

[y

. Separate variables

>

Multiply by integrating factor e* and integrate
. By FTC, we know RHS; by definition of z(¢) we can compute LHS, call it X (%)

w

X(t) + b1 = eaty(t) —+ bo

o

. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=9(t) +a-y(t) + ()

Steps:

1. Separate variables

2. Multiply by integrating factor e and integrate

3. By FTC, we know RHS; by definition of z(t) we can compute LHS, call it X ()
4. Solve for y(t)

y(t) = —e "X (t) + be ™

9/23



Analytical: Linear, first-order ODE with coefficients

0=9(t) +a(t) - y(t) +x(t)

Steps:
1. Separate variables
2. Multiply by integrating factor eJo (M dr and integrate
3. By FTC, we know RHS; by definition of z(t) we can compute LHS, call it X (¢)
4. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=g(t) +alt) - y(t) + 2(t)

Steps:

1. Separate variables

—z(t) = y(t) + a(t) - y(t)
2. Multiply by integrating factor eJo a(r)dr anqg integrate
3. By FTC, we know RHS; by definition of z(t) we can compute LHS, call it X (t)
4. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=9y(t) +alt) - y(t) + 2(t)

Steps:

1. Separate variables
2. Multiply by integrating factor eJoa(m)dr 3nd integrate
—/efota(T)dT-x(t) dt = /ef(f (M dr . [5(4) + a(t) - y(t)] dt

3. By FTC, we know RHS; by definition of z(¢) we can compute LHS, call it X(t)
4. Solve for y(t)

10/23



Analytical: Linear, first-order ODE with coefficients

0=g(t) +alt) - y(t) + 2(t)

Steps:

[y

. Separate variables

>

Multiply by integrating factor eJo a(r)dr apd integrate
. By FTC, we know RHS; by definition of z(t) we can compute LHS, call it X (t)

w

X (£) + by = edoaMdry ) 4y

o

. Solve for y(t)
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Analytical: Linear, first-order ODE with coefficients

0=g(t) +alt) - y(t) + 2(t)

Steps:

1. Separate variables

2. Multiply by integrating factor eJo a(r)dr apg integrate

3. By FTC, we know RHS; by definition of z(t) we can compute LHS, call it X (t)
4. Solve for y(t)

y(t) — fg a(r) dTX(t) + be~ fot a(r)dr
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Boundary value problems

e The solutions we derived in the last two cases are general solutions.

e Specify the arbitrary constant b = get a particular (or exact) solution.
e How to pick b: specify a boundary value of y(t)

e initial condition: for initial value yjg,
Yo =y(0) = X(0) +b = b=yo — X(0)
e terminal condition: for terminal value y at date T,

yr = y(T) = _e—aTX(T) + be—aT — = X(T) + eaTyT
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Solving of linear ODEs

Now we'll study a system of linear, first-order ODEs of the form

yl(t) = allyl(t) + ...+ alnyn(t) + l‘l(t)

yn(t) = anllY1 (t) T ooo Tr annyn(t> + -rn(t)

or, in matrix notation,
y(t) = A-y(t) + z(t) (2)

Again there are three types of solution procedures:

e Graphical. Draw phase diagrams, works for linear and nonlinear, but only for
2 x 2 systems of autonomous equations
e Analytical. Generally only for linear systems

e Numerical. Shooting algorithms and time-elimination methods
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Phase diagrams: A example

Use the diagonal, autonomous system

Bl

Steps to draw phase diagram in
(y1, y2)-space:
1. Draw g; = 0 nullcline

2. Draw arrows in each of the two
regions split by the nullcline

3. Repeat for g2 = 0 nullcline
4. Join the two pictures
5. Use BV to identify exact solution
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Phase diagrams: A example

Use the diagonal, autonomous system

wl [0 o][m .
U2 0 >0f |y \ )

Steps to draw phase diagram in i
(y1, y2)-space:

- - vy
1. Draw g; = 0 nullcline

2. Draw arrows in each of the two \
regions split by the nullcline / }

3. Repeat for g2 = 0 nullcline

4. Join the two pictures

Unstabl
5. Use BV to identify exact solution : ©
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Phase diagrams: A example

Use the diagonal, autonomous system

[y]-] - [\/\ () 0 ] [yl] II.:

Y2 0 <0} |w \ /
Steps to draw phase diagram in
(y1, y2)-space:

1. Draw g; = 0 nullcline

Steady state

- ¥i

2. Draw arrows in each of the two

regions split by the nullcline / \

3. Repeat for g2 = 0 nullcline

4. Join the two pictures

5. Use BV to identify exact solution Stable
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Phase diagrams: A example

Use the diagonal, autonomous system

U1 _ <0 0 Y1
U2 0 >0 |y

Steps to draw phase diagram in
(y1, y2)-space:

1.
2.

Draw g1 = 0 nullcline

Draw arrows in each of the two
regions split by the nullcline

. Repeat for g2 = 0 nullcline
. Join the two pictures

. Use BV to identify exact solution

3

"

E
e - ———

4

Saddle-path stable
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Phase diagrams: A example

Use the nondiagonal system

: W
yl B 0.06 _ 1 yl + 1 .4 Stable arm
| [—0.004 0| |ys 0.04

with boundary conditions _
[ yl (O) = ]_, and 1 : Unstable arm
[ hmt—>oo [670'06t - U1 (t)] = 0. S F‘II
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Phase diagrams: A example

Use the nondiagonal system

i 0.06 —1] [y 1.4 :
= —|— ' Stable axes
) —0.004 0 Y2 0.04 ;

with boundary conditions . ..

Note. Leaving just the stable and
unstable arms looks like a distorted
version of the saddle-path stable figure
from the diagonal case above. Why
might that be?

Unstable axes
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Phase diagrams: A example (Neoclassical growth model)

Use the nonlinear system

()*% = c(t)
F= Stahle arm

é(t) = ¢(t) - [0.3k(t) =7 — 0.06] ( N A

&
~—~
~
N—
I
-

k=0

with boundary conditions k£(0) = 1 and
i2)

lim [e 729 . k(¢)] = 0.

t—o00

(3
The steps to draw the phase diagram are /_‘\

o[
the same as before.

e i = 0 nullcline: ¢ = k%3

Unstable arm

k(h k=10

e ¢ =0 nullcline: £ =10
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Analytical solutions of linear, systems

Use the linear, homogeneous system

y(t) = A-y(t).

Assume that A is diagonalizable: it can
be written as

A=VAV!

where
e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of
eigenvalues of A
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Analytical solutions of linear, systems

Use the linear, homogeneous system 1. Find the eigenvalues of the matrix

A; call them A, ..., \,.
y(t) = A-y(t).

Assume that A is diagonalizable: it can
be written as

A=VAV!

where
e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of
eigenvalues of A
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Analytical solutions of linear, systems

Use the linear, homogeneous system

y(t) = A-y(t). 2. Find the corresponding eigenvectors;

Assume that A is diagonalizable: it can use them to construct V.

be written as
A=VAV~!

where
e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of
eigenvalues of A
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Analytical solutions of linear, systems

Use the linear, homogeneous system

y(t) = A-y(t).

Assume that A is diagonalizable: it can
be written as 3. Rewrite the system using the change
of variables z(t) = V1. y(t):
A=VAV™!
2(t) = A - 2(t)
where
e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of
eigenvalues of A
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Analytical solutions of linear, systems

Use the linear, homogeneous system

y(t) = A-y(t).

Assume that A is diagonalizable: it can
be written as

A=VAV!

where

4. Solution is z;(t) = b; - )i for
t=1,...,n; gather into matrix as
z(t) = Eb.

e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of
eigenvalues of A
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Analytical solutions of linear, systems

Use the linear, homogeneous system

y(t) = A-y(t).

Assume that A is diagonalizable: it can
be written as

A=VAV!

where
e I/ is the matrix of eigenvectors of A

e A is the diagonal matrix of

eigenvalues of A
5. Get general solution: y = V Eb
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Analytical solutions of linear, systems

Use the linear, nonhomogeneous

system
y(t) = A-y(t) + x(t)

Assume as before that A4 is

diagonalizable:

A=VAV!
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Analytical solutions of linear, systems

1. Find the eigenvalues and eigenvectors of A

Use the linear, nonhomogeneous

system
y(t) = A-y(t) + x(t)

Assume as before that A4 is

diagonalizable:

A=VAV!
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Analytical solutions of linear, systems

2. Rewrite the system using the change of

Use the linear, nonhomogeneous
variables z(t) = V1. y(t):

system

yt) = A-y(t) + z(t) ) =A-z@t)+ VT x(t)

Assume as before that A4 is

diagonalizable:

A=VAV!
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Analytical solutions of linear, systems

Use the linear, nonhomogeneous

system

y(t) = A-y(t) + x(t)

Assume as before that A is 3. Solution for i =1,...,nis

diagonalizable:
. zi(t) = et / e~ MV z(7)] dr + ety

(2
A=VAV!
which we can gather into z(t) = EX + Eb
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Analytical solutions of linear, systems

Use the linear, nonhomogeneous

system
y(t) = A-y(t) + x(t)

Assume as before that A4 is

diagonalizable:

A=VAV!

4. Get general solution: y = VEX + VEb

17/23



Analytical solutions of linear, systems

Work through example on p.590-592 of Barro & Sala-i-Martin (2004)
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Connecting the graphical and analytical solutions

If the two eigenvalues are . ..

When we diagonalize A, we do a change
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A

Stability properties depend on signs

of eigenvalues.

19/23



Connecting the graphical and analytical solutions

If the two eigenvalues are . ..
1. real and positive — unstable

When we diagonalize A, we do a change
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A

Stability properties depend on signs

of eigenvalues.
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Connecting the graphical and analytical solutions

If the two eigenvalues are . ..

When we diagonalize A, we do a change 2. real and negative — stable
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A

Stability properties depend on signs

of eigenvalues.
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Connecting the graphical and analytical solutions

If the two eigenvalues are ...

When we diagonalize A, we do a change

of basis = “shift” the axes 3. real with opposite signs —>
e new axes are the eigenvectors of A saddle-path stable
e the elements of the new diagonal

matrix that governs the system are
the eigenvalues of A

Stability properties depend on signs

of eigenvalues.
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Connecting the graphical and analytical solutions

If the two eigenvalues are ...

When we diagonalize A, we do a change
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal 4. complex with negative real parts
matrix that governs the system are — oscillating convergence

the eigenvalues of A

Stability properties depend on signs

of eigenvalues.
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Connecting the graphical and analytical solutions

If the two eigenvalues are ...

When we diagonalize A, we do a change
of basis = “shift” the axes
e new axes are the eigenvectors of A
e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A 5. complex with positive real parts
Stability properties depend on signs — oscillating divergence

of eigenvalues.
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Connecting the graphical and analytical solutions

If the two eigenvalues are ...

When we diagonalize A, we do a change
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A
Stability properties depend on signs

of eigenvalues. 6. complex and zero real parts —
ellipses around S.S.
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Connecting the graphical and analytical solutions

If the two eigenvalues are ...

When we diagonalize A, we do a change
of basis = “shift” the axes

e new axes are the eigenvectors of A

e the elements of the new diagonal
matrix that governs the system are
the eigenvalues of A

Stability properties depend on signs

of eigenvalues.

7. equal = y;(t) = (bj1 + biot)eM

19/23



Oh, so your system is ?

Consider the system ¢;(t) = fi[y1(t),...,yn(t)] for i = 1,...,n, where functions f; are
nonlinear. Now linearize around the steady state.

@) =1+ () —v1) + -+ (e (Y — y0) + Ba

Un(t) = fo + (F)u (w1 — 1) + o 4+ (F2)yn (Un — Un) + Ra
with

e y = steady-state value of y;
° (ff)yj = partial derivative of f; w.r.t. y; at s.s.
e f = steady-state value of f;

e R, = Taylor residuals
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Oh, so your system is ?

Consider the system ¢;(t) = fi[y1(t),...,yn(t)] for i = 1,...,n, where functions f; are
nonlinear. Now linearize around the steady state.

@) =1+ () —v1) + -+ (e (Y — y0) + Ba

Un(t) = fo + (F)u (w1 — 1) + o 4+ (F2)yn (Un — Un) + Ra
with

e y = steady-state value of y;
e (f})y; = partial derivative of f; w.rt. y; at s.s.
e f' = steady-state value of f;, which equals zero

e R; = Taylor residual, which is approximately zero around s.s.
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Oh, so your system is ?

Consider the system y;(t) = fi[y1(t), ..., yn(t)] for i = 1,...,n, where functions f; are
nonlinear. Now linearize around the steady state.

1) = (F)u (v = 91) + -+ () (Yn = 90)

Un(t) = (f:)yl(yl —y1)+...+ (f;)yn (Yn — yp)
with
e y = steady-state value of y;

o (f),; = partial derivative of f; w.r.t. y; at s.s.
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Oh, so your system is ? Now it’s (approximately) linear!

Consider the system ¢;(t) = fi[y1(t), ..., yn(t)] for i = 1,...,n, where functions f; are
nonlinear. Now linearize around the steady state.

(D (D
yt)=A-(y—y°), A= : :
(F)m - (F)um

with

e y’ = steady-state value of y;

o (f)y; = partial derivative of f; w.r.t. y; at s.s.
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Our ur-example: The neoclassical growth model

Steady state: (k*,c¢*) = (10, 2)

Use the nonlinear system k(t) = 0.3(k") 7 (k — k") = (¢ = ¢7)

=0.06k —c+ 14
k(t) = k(t)*? — c(t) &(t) ~ ¢ 0.3+ (=0.7) (k") 7] (k — k*)
é(t) = c(t) - [0.3k(t) "7 — 0.06] —0(c— &)
with boundary conditions k(0) = 1 and = —0.008k +0.08
Fm [e—0.0Gt k()] = 0. All together ...

- [ ][l
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Wait ...we’ve seen that system before!

Slide 15: NGM Slide 14: That system
=10 Stable arm 3
\\k- E=0 = 0 m
S Stable arm
—/ Vi =0
(2)
K]

/-‘\ -1 -\\ Unstable arm

o0y of---- Unstable arm T | . l_.

i 2 : : (4]

_;.HI“ =10 k 1-.|u|l =1 Vi =10 "
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Numerics: Time-elimination method

Read p.593-596 of Barro & Sala-i-Martin (2004)
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