
Buy, Keep, or Sell: Economic Growth and the Market for Ideas Akcigit, Celik, & Greenwood (2016)

Levi Crews (Chicago) March 2020

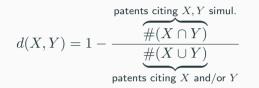
- Firms, ideas differentiated by **technology class** \implies class-X ideas best-suited for class-X firms
- if not, no mismatch \implies no resale (except maybe trolls)
- but there is a **secondary market** for patents:
 - 20% of all domestic patents (1976–2006 USPTO) are traded from one firm to another
 - not even accounting for M&A, licensing, within-firm transfers, sales by individuals
 - lots of frictions: adverse selection (lemons), search (no centralized marketplace)
- question: how big and how important is the misallocation from mismatch?
- today: review of facts & model with comments interspersed

What gets sold on the secondary market?

Tech. classes X, Y (IPC codes):

Patent p, firm f:

$$d_{\iota}(p,f) = \left[\frac{1}{|\mathcal{P}_f|} \sum_{p' \in \mathcal{P}_f} d(X_p, Y_{p'})^{\iota}\right]^{1/\iota}$$


with $0 < \iota \leq 1$

A patent p . . .

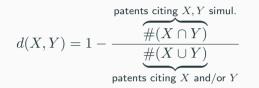
- 1. contributes more to firm f's stock market value the lower is d(p, f);
- 2. is more likely to be **sold** the **higher** is d(p, f);
- 3. is, on average, sold to a buyer b for which $d(p,b) < d(p,f). \label{eq:constraint}$

Suggests secondary market helps reallocate patents to better users

Tech. classes X, Y (IPC codes):

Patent p, firm f:

$$d_{\iota}(p,f) = \left[\frac{1}{|\mathcal{P}_f|} \sum_{p' \in \mathcal{P}_f} d(X_p, Y_{p'})^{\iota}\right]^{1/\iota}$$


with $0 < \iota \leq 1$

A patent $p \ldots$

- 1. contributes more to firm f's stock market value the lower is d(p, f);
- 2. is more likely to be **sold** the **higher** is d(p, f);
- 3. is, on average, sold to a buyer b for which $d(p,b) < d(p,f). \label{eq:constraint}$

Suggests secondary market helps reallocate patents to better users

Tech. classes X, Y (IPC codes):

Patent p, firm f:

$$d_{\iota}(p,f) = \left[\frac{1}{|\mathcal{P}_f|} \sum_{p' \in \mathcal{P}_f} d(X_p, Y_{p'})^{\iota}\right]^{1/\iota}$$

with $0 < \iota \leq 1$

A patent $p \ldots$

- 1. contributes more to firm f's stock market value the lower is d(p, f);
- 2. is more likely to be **sold** the **higher** is d(p, f);
- 3. is, on average, sold to a buyer b for which d(p,b) < d(p,f).

Suggests secondary market helps reallocate patents to better users

Model in a picture: Propinquity + Buy/Keep/Sell

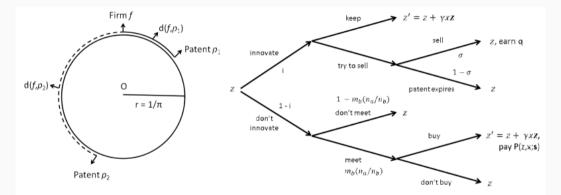


FIGURE 2.—The technology circle (left panel) and the timing of events (right panel) for *d*-type ideas. Note that *n*-type ideas arrive after the market for *d*-type patents closes.

An inventory of inefficiencies

1. knowledge spillovers:

 $z' = z + \gamma_d x \mathbf{z} + \gamma_n b \mathbf{z}$

almost always in our models

- 2. **undirected innovation**: innovation yields patent of random propinquity
- undirected search: meet a patent agent holding a patent of random propinquity
- 4. **non-unit contact rate**: may not meet a patent agent at all

What if we could eliminate (2)-(4)?

What else could we have considered?

- adverse selection: ideas differentiated by quality, not just propinquity
- financial frictions: need capital to pay up front for patent

An inventory of inefficiencies

1. knowledge spillovers:

 $z' = z + \gamma_d x \mathbf{z} + \gamma_n b \mathbf{z}$

almost always in our models

- 2. **undirected innovation**: innovation yields patent of random propinquity
- undirected search: meet a patent agent holding a patent of random propinquity
- 4. **non-unit contact rate**: may not meet a patent agent at all

What if we could eliminate (2)-(4)?

What else could we have considered?

- adverse selection: ideas differentiated by quality, not just propinquity
- financial frictions: need capital to pay up front for patent

TABLE VI

THOUGHT EXPERIMENTS^a

	BM	PDS	PDSwHC	PI
Output growth rate, $\%$, $(\mathbf{g}^{\zeta/(\zeta+\lambda)}-1) \times 100$	2.08	2.19	3.05	3.38
Innovation rate, i	0.58	0.56	0.57	0.61
Welfare gain, $\alpha - 1$	0.00	0.02	0.14	0.18
Fraction of all patents sold	0.17	0.20	0.68	0
Growth from all patents sold	0.19	0.27	0.73	0

^aThe first column of results is for the baseline model (BM). Perfectly directly search (PDS) is shown in the second column where a patent sold is a perfect match for the buyer (x = 1). In the third column (PDSwHC), there is perfectly directed search, plus there is a high contact rate between patent agents and buyers. All innovating firms draw the perfect idea (x = 1) in the last column (PI). The figures in the first row (only) are in percent.

How big is the misallocation of ideas?

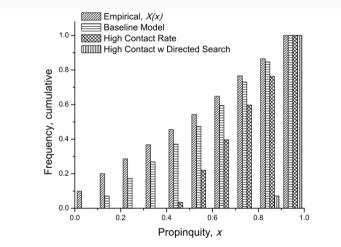


FIGURE 7.—Misallocation of ideas. The graph plots the cumulative distribution functions for x. A higher value for x, measuring propinquity, implies that an idea is better suited for a firm.