Growth Through Heterogeneous Innovations

Akcigit & Kerr (NBER WP #16443)

Levi Crews (Chicago)

January 2020

$Heterogeneous \ \textbf{firms} \rightleftharpoons Heterogeneous \ \textbf{innovations}$

Recall Klette & Kortum (2004):

- firm size = # product lines
 - geometric dist. of sizes
 - growth **independent** of size
- innovation size = constant
- Cost(R&D) ⇒ R&D intensity
 constant in firm size

Heterogeneous firms \rightleftharpoons Heterogeneous innovations

Recall Klette & Kortum (2004):

- firm size = # product lines
 - geometric dist. of sizes
 - growth independent of size
- innovation size = constant
- Cost(R&D) ⇒ R&D intensity
 constant in firm size

But this does not match the data!

Heterogeneous firms \rightleftharpoons Heterogeneous innovations

Recall Klette & Kortum (2004):

- firm size = # product lines
 - geometric dist. of sizes
 - growth independent of size
- innovation size = constant
- Cost(R&D) ⇒ R&D intensity
 constant in firm size

But this does not match the data!

From the data:

- ✓ Size distribution of firms is highly skewed (A1)
- Small firms that survive grow faster (A3)
- Relative rate of major innovations higher for smaller firms (D4)

Akcigit & Kerr (2010) pprox Klette & Kortum (2004) + 2 new features

Feature 1: Two innovation types

- exploitation: incumbent improves own existing product j
 - motive: increase mark-ups, profit
 - cost \propto quality of j
 - step size **constant** $\lambda > 0$
- exploration: incumbent/entrant "creatively destroys" a product line
 - motive: expand, more profit
 - ullet cost \propto avg. quality
 - step size **heterogeneous**

Akcigit & Kerr (2010) pprox Klette & Kortum (2004) + 2 new features

Feature 1: Two innovation types

- ullet exploitation: incumbent improves own existing product j
 - motive: increase mark-ups, profit
 - cost \propto quality of j
 - step size **constant** $\lambda > 0$
- exploration: incumbent/entrant "creatively destroys" a product line
 - motive: expand, more profit
 - ullet cost \propto avg. quality
 - step size heterogeneous

Feature 2: Heterogeneous step sizes

- major (θ): size $\eta > \lambda$
 - starts new wave of follow-ups
- follow-up (1θ) : size $s_j = \eta \alpha^{k_j}$
 - $s_j \leq \lambda$ depends on $\alpha \in (0,1)$, k_j steps since last major innovation

$$\left| \begin{array}{c} \frac{\eta}{P_{1,f_1}} \frac{\eta \alpha}{P_{2,f_2}} \frac{\eta \alpha^2}{P_{3,f_2}} \frac{\lambda}{P_{4,f_2}} \frac{\lambda}{P_{5,f_2}} \frac{\eta \alpha^3}{P_{\mathfrak{C},f_4}} \\ \end{array} \right| \underbrace{\begin{array}{c} \frac{\eta}{P_{7,f_5}} \frac{\lambda}{P_{8,f_5}} \frac{\eta \alpha}{P_{9,f_6}} \\ \end{array}}_{\text{Tech Cluster 2}}$$

- **Prop. 5:** Small firms grow faster than large firms.
- Prop. 6: Small firms have greater R&D intensity than large firms.
- Prop. 7: Small firms / new entrants have comparative advantage in major innovations

- ✓ Small firms that survive grow faster
 (A3)
- R&D intensity decreases with firm size (B1)
- Relative rate of major innovations higher for smaller firms (D4)

- **Prop. 5:** Small firms grow faster than large firms.
- Prop. 6: Small firms have greater R&D intensity than large firms.
- Prop. 7: Small firms / new entrants have comparative advantage in major innovations

- ✓ Small firms that survive grow faster
 (A3)
- R&D intensity decreases with firm size (B1)
- ✓ Relative rate of major innovations higher for smaller firms (D4)

- **Prop. 5:** Small firms grow faster than large firms.
- Prop. 6: Small firms have greater R&D intensity than large firms.
- Prop. 7: Small firms / new entrants have comparative advantage in major innovations

- ✓ Small firms that survive grow **faster** (A3)
- R&D intensity decreases with firm size (B1)
- Relative rate of major innovations higher for smaller firms (D4)

- **Prop. 5:** Small firms grow faster than large firms.
- Prop. 6: Small firms have greater R&D intensity than large firms.
- Prop. 7: Small firms / new entrants have comparative advantage in major innovations

- ✓ Small firms that survive grow **faster** (A3)
- R&D intensity decreases with firm size (B1)
- Relative rate of major innovations higher for smaller firms (D4)

- Prop. 5: Small firms grow faster than large firms.
- Prop. 6: Small firms have greater R&D intensity than large firms.
- Prop. 7: Small firms / new entrants have comparative advantage in major innovations

- ✓ Small firms that survive grow faster
 (A3)
- ✓ R&D intensity decreases with firm size (B1)
- Relative rate of major innovations higher for smaller firms (D4)

intuition: Exploitation scales linearly with firm size; exploration does not.

Intuition: Scaling of exploitation vs. exploration

• **Prop 1:** For any firm f, the optimal R&D decisions are given by

$$z_j^* = z^* = c_z'^{-1}(A\lambda), \quad \forall j \in \mathcal{J}_f$$
$$x^* = c_z'^{-1}(A[1+\Gamma])$$

which implies

$$\begin{aligned} &\mathsf{Cost}(\mathsf{Exploit}) = c_z(z^*) \sum_{q_j \in \pmb{q}_f} q_j = c_z(z^*) \underbrace{Q_f}_{\mathsf{firm \ size}} \\ &\mathsf{Cost}(\mathsf{Explore}) = c_x(x^*) \bar{q} \end{aligned}$$

• note: Klette & Kortum (2004) have exploration that scales linearly with firm size