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Setting goals and restricting scope

Goal: Understand how to prove existence and uniqueness of spatial models

Scope: A spatial model is a (GE) model in which some subset of goods or factors can move

across locations

e international trade: labor doesn't move, usually static/stationary
e economic geography: labor can migrate/commute, usually static/stationary

e international macro/finance: labor doesn't move, capital does, nominal matters, usually

dynamic
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Setting goals and restricting scope

Goal: Understand how to prove existence and uniqueness of spatial models

Scope: A spatial model is a (GE) model in which some subset of goods or factors can move
across locations

¥ international trade: labor doesn't move, usually static/stationary
¥ economic geography: labor can migrate/commute, usually static/stationary
X international macro/finance: labor doesn't move, capital does, nominal matters, often

dynamic

Focus on static GE of trade & geography models, but results still useful for dynamic
models (take “snapshots”)
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Why bother proving existence/uniqueness?

Existence

e proof by construction can suffice ex post, but super helpful as a researcher to have a
guarantee before you code a solver

e data is in eqpm. = SMM/GMM only searches over parameter space that yields eqbm.
Uniqueness

e esp. in economic geography, multiplicity is often expected — we want to know when
e without it, counterfactual exercises are hard to interpret

e equilibria are locally isolated (MWG), so can study small perturbations even with multiplicity
e exact hat requires a selection rule (Ahlfeldt et al., 2015)

Most important: You learn how your model really works!
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What Allen, Arkolakis, and Takahashi (2020) do (and don’t do)

Do ... Don’t ...
e Define class of spatial models called
gravity models
e List well-known examples of gravity
models (Table 1)
e Show sufficient conditions for
existence/interiority /uniqueness that
depend only on gravity elasticities

e Show (local) counterfactual real price
changes depend only on gravity
elasticities and observed data
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What Allen, Arkolakis, and T

hashi (2020) do (and don’t do)

Do ... Don't ...
o Define class of spatial models called e make it easy to use their results (not a
gravity models cookbook!)

o List well-known examples of gravity e no definitive checks if your model fits

models (Table 1)

e Show sufficient conditions for

e no necessary conditions

e claim that all gravity models are

. . .. . isomorphic
existence/interiority /uniqueness that » o )
e same positive predictions given same

depend only on gravity elasticities

Show (local) counterfactual real price
changes depend only on gravity
elasticities and observed data

estimated elasticities & data =~
same normative predictions or optimal

policy

e different lenses on different data
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e Show (local) counterfactual real price same normative predictions or optimal
changes depend only on gravity policy
elasticities and observed data e different lenses on different data

AAT20 doesn’t solve every problem, but it helps a lot!
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How did folks prove existence/uniqueness before AAT207?

1. Omit it. Just trust your gut (Eaton and Kortum, 2002)
2. Assume it. But argue it'll work for sure if N — oo (Costinot, 2009)

3. Reduce it. That is, use a two-location or symmetric location model s.t. equilibrium
reduces to a scissors graph (Melitz, 2003; Krugman, 1991)

4. Contort it (to fit MWG). Find a fixed point of the excess demand function, which is
unique if goods are gross substitutes (Alvarez and Lucas, 2007)

5. Borrow it. Cite Allen and Arkolakis (2014), the proto-AAT20 for just geography models
(more on this later. . .)
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e Each location (i € S) produces a

representative good

e We'll state six conditions about
aggregate trade flows that reduce the
equilibrium to two equations per

location

e Definitions —

output

quantity traded
output price
bilateral price
income

trade flows
expenditure
price index

real expenditure
real output price

Q; >0

Qij 20

pi =0

pij =2 0

Y = piQs
Xij = pijQij
E, =30, X
P, =...

W; = Ei/Pi
pi/P;
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The six conditions

C.1 (Iceberg costs) for some trade frictions {7;;}, pi; = piTij
C.2 (CES aggregate demand) 3 exogenous (negative of the) demand elasticity ¢ € R s.t.

-1/¢ —
_d D;i
E; = (E pijﬁ> W, = PW;, = X;; = ﬁEj

i R

C.3 (CES aggregate supply) 3 exogenous supply shifters {¢;}, exogenous aggregate supply
elasticity ¥ € R, and endogenous scalar k > 0 s.t.

P
o (
Qi = Ky (Pz>

C.4 (Output market clearing) Vi, Q; = >, 7;;Qi; or, equivalently, Y; = >, X;;
C.5 (Trade balance) Vi, E; = p;Q; (they allow exogenous deficits, but not in Theorem 1...)

C.6 (Normalization) ). Y; = 1 (pins down product of x and price scale)
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The two equilibrium equations (per location)

C]. pij = piTij

]);.¢
C.2. Xij = Zi;)i_j(p Ej

P
C.3. Q= xc; (%)
Ca Y=Y, Xy
C5. E, =pQ;

C6. Y,¥i=1

An equilibrium is {Y;, E;, X,;,p;/P;} in levels and
{Qi, Qij, pis pij, Pi} up to scale.

Combine C.1 and C.2 to get
PO =3 ;%% Vi (7)
J
Combine C.1-5 with Y; = p;@Q; and rearrange to get
I+¢ [ Pi v -6 po bj v
pi G (Pz> = ZTz‘j Pi'pjc; (PJ) , Vi (6)
J

What really matters is if your model’s equilibrium can
be written like (6) and (7).
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What’s a gravity model and what’s not? (We'll circle back ...)

Gravity models (Table 1) Not-gravity models
e Armington (1969); Anderson (1979); e non-CES
Anderson and van Wincoop (2003) e Novy (2013) (translog gravity)
e Krugman (1980) e Fajgelbaum and Khandelwal (2016)

(nonhomothetic demand)

e Melitz (2003) e Melitz and Ottaviano (2008) (outside
e Eaton and Kortum (2002) good)
e Caliendo and Parro (2015) e Head, Mayer, and Thoenig (2014)

(lognormal productivity)

e Allen and Arkolakis (2014)
e Redding (2016)
e Redding and Sturm (2008)

e non-constant factor intensities
e dynamic models with trade deficits

e models with tariffs
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Consider any model contained within the
universal gravity framework with

e balanced trade,
e 7, <ooforallie S, and

e the graph of the matrix of trade frictions
{7} is strongly connected

Then,
1. if 14+ + ¢ # 0, 3 interior eqgbm.;
2. if ¢ > —1 and ¥ > 0, all equilibria are
Interior;
3. if{¢ 20,4 20} or {¢p < —1,9 < -1},
3 unique interior eqbm.

B General Case
. Quasi-symmetry

Interior equilibria
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Proof of Theorem 1, Pt. Solve nonlinear integral equations

Define z as follows:

(%); (pioe ey, . . .
o) U e, ) e Nonlinear integral equations = solve
for unknown functions z under the
Then the system of equations (6) and (7) of the general equilibrium gravity model is X
rewritten in vector form: (Lebesgue) |nteg|’a|
(x); Y Kt Gy = “ x
( ): 2 I, o3 Kij =7, is the “kernel” of the
() 2Ky, integral equation
where A = (a), is given by e Domain of (23) is unbounded —
1+ ¢ 1+¢ Lo .
- Ti9+e 1+9+9 cannot use Brouwer's fixed point
¢ v ' theorem straightaway

1ty +o 1te+e
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Proof of Theorem 1, Pt. 1: Solve nonlinear integral equations

Therefore, consider the following “scaled” version of
equation (23):

3 K oy

(x:); 2Ky
L= - ’ = F(z), (24)

e RHS of (24) is positiveand ), =1 —

and Fis defined over the following compact set C: upper bound puts all Welght on the
C={xeAR);xe[xxVi}x{ye ARy e [0)] Vi), (25 |argest term
where the bounds for x and y are given as follows: ® Sa me for |0Wer bOU nd & Sma”est term
% Hn;u;‘;i?],, , e Note: (24) is not a well-defined mapping
ij Ke''c .
K e unless entries of A are finite = unless
y= lHL}Xﬁ, )= mi‘n S K
ok Sk 1+ +¢#0

Itis trivial to show that F maps from C to C and continuous over the compact set C,
so that we can apply Brouwer’s fixed point and there exists an fixed point z* € C.
There are two technical points to be proved: first, there exists a fixed point for the
original (unscaled) system (eq. [23]); and second, the equilibrium 2 s strictly pos-
itive. These two claims are proved in lemmas 1 and 2, respectively, in appendix B.4.
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Proof of Theorem 1, Pt. 3: Uniqueness, by con

It suffices to show that ther
Suppose that there are two s

Xists a unique interior solution for equation (23).
ictly positive solutions (x, y) and (%, ;) such that
there does not exist ¢, s > 0 satisfying

(x,3:) = (tx;, 5%:)-

Namely, the two solutions are “linearly independent.” First note that forany : € S,
we can evaluate the first row of equation (23).

Smﬂm(;)“ m:,‘\m(;)“_ @ e The key jump is from (26) to (27)

Taking the maximum of the left-hand side,

(28)

Lemma 3, in appendix B 4, shows that the inequality is actually strict. Analogously,

we obtain
") min(?) . (29)
X AN

X .
min — = min | -
s X jes A
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Proof of Theorem 1, Pt. 3: Uniqueness, by contradiction

Dividing equation (28) by equation (29) shows that

e Just cranking through to (30)

= oo

1 _ max;s(x/%) - 111;\};;,(.1(_‘/36‘)(x m;\x‘d()‘/j‘)“'
P min(e/8) T ming (/%) ming(3/5,)° e Collatz-Wielandt formula:
where A _ S
= maxx{min; [ Ax|;/x;
_ maxa(n/3) p(A) ) i[AX]i/x;}
mines(3/3) e why is p(|A|) > 1 a problem?

The same argument is applied to the second row of equation (23) to obtain the
following inequality:

max.s(3./3:)  maxes (/%) maxes(y/5) - o
- oy < — e X T e T B X,
mins(y:/5)  mings(x/%)™ T mings(y;/5;)"

1<y, =
Taking logs in the two inequalities and exploiting the restriction, we can write
In p. anl o In p.
< . (30)
In p, | o Inp
—_——
fl

which from the CollatzWielandt formula implies that the largest eigenvalue of [A|
is greater than one.
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Comparison to older results

1. Alvarez and Lucas (2007): show excess demand function z satisfies

e z is continuous;
e z is homogeneous of degree zero in p;

p -z = 0 for all strictly positive price vectors (Walras' law);

there is a z > 0 such that z,(p) > —z for every commodity ¢ and all p;

if p" — p, where p # 0 but ps = 0 for some /¢, then

max{21(p"), ..., z1x+1(P")} = oo

%i"’ > 0 for all £,¢' with £ # ¢ and all p > 0. [“gross substitutes”]
But gross substitutes fails for ¢» > ¢ > 0 and ¥ < ¢ < 1, where AAT20 still unique
2. Allen and Arkolakis (2014): AAT20 generalizes their Theorem 2 in three ways

e allows for asymmetric trade frictions
e allows for infinite trade frictions between non-ii pairs
e applies to larger class of models (inc. 1 = 0)
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Comparison to their newer results: Allen, Arkolakis, and Li (2020)

e Economies where N heterogeneous agents engage in H types of interactions with
equilibria characterized by
N
Tip = Zfijh(l‘jl, ce o> TiH)
=1
e Existence and uniqueness (up to scale) if

p(A) <1, A= {Mﬂh(%)}
hh'

Jln Zjn!
by multi-dimensional extension of the contraction mapping theorem
e constant elasticity (“gravity”) representation

Yhh! _ . Ennt o Brnt
T =3 Ko [T a3
h’ J h'

e Generalize AAT20 by allowing for. . .
e general (non-constant elasticity) functional forms
e more than two types of economic interactions
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So | have my spatial model. .. now what?

Ask yourself:

1. can | easily map my model to C.1-57
2. can | derive equilibrium conditions that look like (6) and (7)?

3. can | point out an obvious violation of C.1-57
Decision tree:

e If "yes" to 1 or 2, you can almost surely use AAT20 (or AAL20).

e Else if “yes" to 3, throw your hands up OR figure out an extension, then email Treb &
Costas to coauthor AA[your initial here].

e If “no" to all three, circle back to 2 and keep trying with AAL20.
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A (not so) random example

Consider a spatial model with ...

e Armington varieties (at country level), iceberg costs
e a quasilinear homogeneous outside good, freely traded
e discrete choice over production of each Armington variety & outside good at sub-country

level

Obvious violations of C.1-5:

e Demand side

e if all together: fail C.2 because the outside good is not CES
e if just Armington block: fail C.5 because expenditure on outside good = endogenous deficit

e Supply side: no mapping to a country-level representative good (fail C.3)
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