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Transport infrastructure matters — How should we allocate it?

Motivation:

e in theory: transport infrastructure, through trade costs, shapes spatial distribution of
prices, real incomes, and trade flows (Allen-Arkolakis 2014; Donaldson-Hornbeck 2016)

e in practice: billions spent on roads, airports, seaports, ...
Question: How should we allocate transport infrastructure across space?

e are observed networks suboptimal?

e if so, how large are the losses?

What we need: a method to identify the best set of infrastructure investments
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This paper provides such a method and applies it to European roads

Theory: optimal transport in GE
e arbitrary geography, productivity, pop.

e solve planner’s global optimization
problem over space of networks
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This paper provides such a method and applies it to European roads

Theory: optimal transport in GE
e arbitrary geography, productivity, pop.

e solve planner’s global optimization
problem over space of networks

Application: European road network

e welfare gain from optimal 50%

expansion ~

e added links broadly similar to TEN-T
proposal
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How the model works

Planner solves
E Welfare;
{Roadsjk} {Flowsjk} {Actlwty }

subject to
. local consumption feasibility

. local factor market clearing

1
2
3. road construction feasibility
4. balanced flows

5

. non-negativity
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How the model works

Planner solves

e optimal allocation sub-problem: given

max ma max E Welfare; ptima P . &

{Roads } {Flowsjk} {Activity;} roads and flows, solve neoclassical
trade model

subject to e arbitrary geography, productivity, pop.

1. local consumption feasibility e roads & flows pin down trade costs
. e has well-known solutions

2. local factor market clearing
3. road construction feasibility
4. balanced flows
5

. non-negativity
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How the model works

Planner solves

max  max max E Welfare;
Roadsj, } {Flowsj, } {Activity; = . .
{Roads;} { H i+ 55 e optimal flow sub-problem: given

. roads, what are optimal trade flows?
subject to

e shut off GE effects = well-known
problem from optimal transport lit.
. local factor market clearing (see Galichon 2016, Ch8)

1. local consumption feasibility

2

3. road construction feasibility e well-known solution methods: duality
techniques to derive potential field

4. balanced flows e here: same methods work in GE in

5

. non-negativity field of prices
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https://press.princeton.edu/books/hardcover/9780691172767/optimal-transport-methods-in-economics

How the model works

Planner solves

max max E Welfare;

{Roadsj } {Flowsjk} {Activity; }

subject to

1. local consumption feasibility
2. local factor market clearing
3.
4
5

road construction feasibility

. balanced flows

. non-negativity

e network design problem:

e under assumptions: whole problem is
convex, can use dual techniques in
price space

e otherwise: use dual techniques to solve
sub-problems jointly, then simulated
annealing to approximate global max
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Model



Preferences and production = Neoclassical trade model

Environment:
e discrete set of locations J = {1,...,J}
e N traded goods, aggregated by Dj(-)
e 1 non-traded good in fixed supply, H;

e labor L; (fixed or mobile)

4/18



Preferences and production = Neoclassical trade model

Environment:
e discrete set of locations J = {1,...,J}
e N traded goods, aggregated by Dj(-)
e 1 non-traded good in fixed supply, H;

e labor L; (fixed or mobile)

4/18



Preferences and production = Neoclassical trade model

Environment:
e discrete set of locations J = {1,...,J}
e N traded goods, aggregated by Dj(-)
e 1 non-traded good in fixed supply, H;

e labor L; (fixed or mobile)
Preferences: homothetic and concave
uj = U(Cj’ hj)

with
Gl = D;y(D},...,D}Y)

where D; is h.o.d. 1 and concave
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Preferences and production = Neoclassical trade model

Environment: Production:

o fixed factors V; = (V},..., VM)

e immobile across locations

e discrete set of locations J = {1,...,J}

e N traded goods, aggregated by Dj(-)

e mobile across sectors
. . _ 1 N
e intermediates X; = (X7, ..., X/")

e technology: neoclassical or constant

e 1 non-traded good in fixed supply, H;

e labor L; (fixed or mobile)
Preferences: homothetic and concave n__ pFngpn yyn yn
Yi =L, V) X))

uj = U(Cj’ hj)

with
Gl = D;y(D},...,D}Y)

where D; is h.o.d. 1 and concave
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Preferences and production = Neoclassical trade model

Environment: Production:

o fixed factors V; = (V},..., VM)

e immobile across locations

e discrete set of locations J = {1,...,J}

e N traded goods, aggregated by Dj(-)

e mobile across sectors
. . _ 1 N
e intermediates X; = (X7, ..., X/")

e technology: neoclassical or constant

e 1 non-traded good in fixed supply, H;

e labor L; (fixed or mobile)

Preferences: homothetic and concave Yj" _ an(Lf’vaXf)
uj = U(Cj’ hj)
Nests neoclassical trade models:
with e Armington
Gl = D;y(D},...,D}Y) e Ricardian

e factor-endowment

where D; is h.o.d. 1 and concave

4/18



Locations J are arranged on an

[o! 0 0 o o8 2 p
7/ \
\\\/ \\// \y \Y/ \</ // \\// \\//
. // o/ \\ SN SN N //\\ p |/ \\
e J nodes in set J NN AN
X X X K R ] XX
. SN 7N SN AN
e & = set of edges (unordered pairs of J) N N NN N N Ny
SN \\ / \\/»/ N // SN NS
e N(j) = set of neighbors of location j A LUALSLASLSUASL S
. SR N~ I SN S SINC TN
e goods only shipped through I XX XX | XXX
. . SN N N SN N N N
connected locations k € N/ (j) N O N AN AN A
N N d NS N N/ \\/
5 o s a X AN N N i e
o not | hicall
not necessarily geographically L
_ _ VAV VLV VAV
contiguous: airports, seaports KA A A R ] A K
/ AN VAN AN \
N TN PR VAR ARN / AT TN p
\/\/ /:/\ \ /\ < /\/\ \/\ 4\/\/\ \/\/ /\/\
SN \Cf. ~, / \J/ SN “,
\\// \\// NN ik // \\// \\/’
/ X A X /
ANVANANANAN . AN N
NN N N N N Ny

5/18



Locations J are arranged on an

J nodes in set J

e & = set of edges (unordered pairs of J)

N(j) = set of neighbors of location j

e goods only shipped through
connected locations k € N (j)

e not necessarily geographically
contiguous: airports, seaports

e can handle topography, too:
mountains, rivers, ...

5/18



Transport technology: Endogenous iceberg trade costs

Transporting one unit of good n from j to k requires
TJZ = Tjk( j7<7 IJk)
units of the good itself, where

e Q7 = flow of good n along jk link regardless of where it was produced

o /i = level of infrastructure on jk link

We assume that, along all links jk,

I7i(Q, 1) ()

——— >0 d ——=<0
o ~— ™" ol =

N——— N———
congestion paved, more lanes

and 7 (Q, 1) # 7i¢(Q, I) because of topography (distance, ruggedness, . ..)
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Conservation of flows constraint and the shadow price of goods

For all locations j = 1,...,J and commodities n=1,..., N,
D"+§ XM+ > A+ TS Y+ > @
keN(j) ieN())
Consumption + Intermediate Use + Exports Production + Imports
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For all locations j = 1,...,J and commodities n=1,..., N,
D"+§ XM+ > A+ TS Y+ > @
keN(j) ieN())
Consumption + Intermediate Use + Exports Production + Imports

Let P;" denote the planner’s multiplier on this constraint

e P! = society’s shadow value of marginal unit of good n in location j

e P! = price of good n in location j in efficient CE
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Infrastructure technology

e Define transport network as {/jx}je.7 ken;
e Infrastructure built with one scarce resource: “asphalt”
e in fixed aggregate supply K
e freely shipped across locations
e only used for building infrastructure
o all together: opportunity cost of building /i is just not building /;
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Infrastructure technology

e Define transport network as {/jx}je.7 ken;

e Infrastructure built with one scarce resource: “asphalt”
e in fixed aggregate supply K

freely shipped across locations

only used for building infrastructure
all together: opportunity cost of building /i is just not building /;,

° 6},( = asphalt intensity of building infrastructure on link jk

e network-building constraint: with multiplier Px (“price of asphalt™)

D 2. Gidks<K

JET keN())
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Infrastructure technology

e Define transport network as {/jx}je.7 ken;
e Infrastructure built with one scarce resource: “asphalt”
e in fixed aggregate supply K
e freely shipped across locations
e only used for building infrastructure
o all together: opportunity cost of building /i is just not building /;

5k = asphalt intensity of building infrastructure on link jk

network-building constraint: with multiplier Px (“price of asphalt™)

Z Z 6Jkk§K

JET keN())

problem allows for bounds on infrastructure:

0< ljk < i < ljk < oo
~—

existing road feasible road
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Let’s recap with a figure

e neoclassical HH, firms at each node in J
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Let’s recap with a figure

o)
e neoclassical HH, firms at each node in J
e trade only along connected edges in £
e trade costs 7;; decrease in level of
infrastructure [y (blue thickness) but
increase in volume of trade flows Qj
C
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Let’s recap with a figure

e neoclassical HH, firms at each node in J
e trade only along connected edges in £

e trade costs 7;; decrease in level of
infrastructure [y (blue thickness) but
increase in volume of trade flows Qj

e asphalt K is scarce but sunk
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Planner’s problem (with fixed labor)

W = m;{ax} ijLjU(cj,hj)
i }s 2
{DJ-",LF V" X7 AQ
subject to
1. availability of commodities: ¢;L; < Dj(Djl7 .
2. conservation of flows constraint: for all j, n

D”+ZX”” e Z A+mR <Y+ > QF

keN(j ieEN())

D) and h;L; < H; for all j

?

3. network-building constraint (subject to bounds on /j):
> > k<K
JET keN())

4. local factor market clearing (L; and V;)

5. non-negativitiy constraints on consumption, flows, and factor use
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Planner’s problem (with fixed labor)

W =maxmax  max ijLjU(cj,hj)
{Ijk} {ij} R iJVhJ; R 5
(LN,

subject to

1. availability of commodities: ¢;L; < D;(D},...,DJ") and h;L; < H; for all j

?

2. conservation of flows constraint: for all j, n
D”+ZX"" + > A+TRRB Y+ D @F
keN(j) ieEN())
3. network-building constraint (subject to bounds on /j):
S Y <k
JET keN())

4. local factor market clearing (L; and V)
5. non-negativitiy constraints on consumption, flows, and factor use
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Convexity of the planner’s problem

(i) Given the network {/}, the joint optimal transport and allocation problem (with

fixed labor) is a convex optimization problem if
Q7jk(Q, 1) is convex in Q, Vj € T,k € N(j);

(i) the full planner’s problem including the network-design problem is a convex
optimization problem if, in addition,

Q7x(Q, 1) is convex in Q and I, Vj € J,k € N(j);

Intuition: two complementary forces. ..
e large flows = congestion

e large flows = incentive to increase capacity

Eventually, congestion must win out for the full problem to be convex
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Numerical implementation: Convexity pays off!

If the full planner’s problem is convex, then the KKT conditions are , and thus
the solution to the dual problem

inf L(x,P
sy (x,P),
with the solution to the primal problem

Slipllgfoﬁ(x,P).

\. J

(i) use FOCs to express control variables as function of prices, x(P)

(i) reduce dual to convex minimization problem

inf L(x(P).P)

(iii) solve with gradient-descent algorithm — guaranteed to converge to optimum
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Optimal flows

Get a no-arbitrage condition from the planner’s first-order condition for flows:

n

orl,
<l+7h+ 2

50 ﬂ,——ﬁQk>0

L
=

Any price differential that exceeds the marginal transport cost would be exploited.

e with no congestion (97}, /0Qj, = 0), price differential bounded by trade cost
o if Q7j(Q, /) is convex in Q, can invert RHS to get ~ﬂ((P,f’/Pj"), which is increasing

e each good n flows in only one direction (to the higher price)
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Optimal network

With upper bound I;-k not binding, the planner’s first-order condition for infrastructure is:

i nmn 87:;’1 H
Pedj = D PQj T ) T e e

Marginal building cost

Marginal gains from infrastructure
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Optimal network

With upper bound /_jk not binding, the planner’s first-order condition for infrastructure

) oT}, }
Picdj >> P (_8/.)7 = if lx > Ly
—— n ik

Marginal building cost

IS:

Marginal gains from infrastructure
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Workhorse parameterization: Log-linear transport costs

Suppose that

QP .

Main result: Q7j(Q,/) is convex in both arguments iff 3 > ~
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Workhorse parameterization: Log-linear transport costs

Suppose that

- Q°
Ti(Q, 1) = ik

with 5> 0,7 >0

Main result: Q7j(Q,/) is convex in both arguments iff 3 > ~

Also get intuitive, closed-form solutions:

e optimal flows:

15/18



Workhorse parameterization: Log-linear transport costs

Suppose that

B
(@ 1) = 5

with 5> 0,7 >0

Main result: Q7j(Q,/) is convex in both arguments iff 3 > ~

Also get intuitive, closed-form solutions:

e optimal flows:

e optimal network:

[ = min{max{ /3, Ly}, I;-k}, with [j = [



Taking the planner’s problem to the data > Wait, does that make sense?

Vars/params  Calibration

J 0.5 arc-degree cells
& connect contiguous cells
Parameterization /ﬁ(bs weighted sum of lanes
e preferences: Cjah}_O" CES L})bs ] NASA-SEDAC's GPW v.4
obs 1
e production: Y = z[" LD LELEE .G—Ec.on 4.0
/ I o model-implied

e transport: log-linear (previous slide)

H; model-implied

(] traded sectors: ].1 (10 d|ﬂ:, 1 homog.) o= 04 exp. share Of |oca| cons.
8 =0.13 Couture et al. (2018)
v =0.10 Couture et al. (2018)
517,( distancej,
6}k distancej, ruggedness;,
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Optimal road expansion and reallocation in Spain

Expand: 1.5K with [, = 3> Reallocate: K with /;, =0

Same exercise across 24 countries: ]
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Optimal road expansion across Western Europe vs. TEN-T proposal

Model (labor mobile within countries) Discretized TEN-T network
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Appendix




The decentralized equilibrium can be characterized, but not matched to data

Full planner’s problem can be decentralized with proper set of Pigouvian taxes:
e atomistic shippers pay tolls

e link-specific contractors build roads, earn toll revenue

e tolls set to perfectly offset congestion
But that set of Pigouvian taxes is not in the DGP!
e the DGP may be a competitive equilibrium, but it's not this one

So why do it this way? Anything weaker and we lose global optimality €=
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