
Optimal transport networks in spatial equilibrium

Fajgelbaum & Schaal (Econometrica 2020)

Levi Crews

February 2022



Transport infrastructure matters — How should we allocate it?

Motivation:

• in theory: transport infrastructure, through trade costs, shapes spatial distribution of

prices, real incomes, and trade flows (Allen-Arkolakis 2014; Donaldson-Hornbeck 2016)

• in practice: billions spent on roads, airports, seaports, . . .

Question: How should we allocate transport infrastructure across space?

• are observed networks suboptimal?

• if so, how large are the losses?

What we need: a method to identify the best set of infrastructure investments
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This paper provides such a method and applies it to European roads

Theory: optimal transport in GE

• arbitrary geography, productivity, pop.

• solve planner’s global optimization

problem over space of networks

Application: European road network

• welfare gain from optimal 50%

expansion ≈ 2.5%

• added links broadly similar to TEN-T

proposal
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How the model works

Planner solves

max
{Roadsjk}

max
{Flowsjk}

max
{Activityj}

∑
j

Welfarej

subject to

1. local consumption feasibility

2. local factor market clearing

3. road construction feasibility

4. balanced flows

5. non-negativity

• optimal allocation sub-problem: given

roads and flows, solve neoclassical

trade model

• optimal flow sub-problem: given

roads, what are optimal trade flows?

• network design problem:
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• shut off GE effects =⇒ well-known

problem from optimal transport lit.

(see Galichon 2016, Ch8)
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5. non-negativity

• optimal allocation sub-problem: given

roads and flows, solve neoclassical

trade model

• optimal flow sub-problem: given

roads, what are optimal trade flows?

• network design problem:

• under assumptions: whole problem is

convex, can use dual techniques in

price space

• otherwise: use dual techniques to solve

sub-problems jointly, then simulated

annealing to approximate global max
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Model



Preferences and production = Neoclassical trade model

Environment:

• discrete set of locations J = {1, . . . , J}
• N traded goods, aggregated by Dj(·)
• 1 non-traded good in fixed supply, Hj

• labor Lj (fixed or mobile)

Preferences: homothetic and concave

uj = U(cj , hj)

with

cjLj = Dj(D
1
j , . . . ,D

N
j )

where Dj is h.o.d. 1 and concave

Production:

• fixed factors Vj = (V 1
j , . . . ,V

M
j )

• immobile across locations

• mobile across sectors

• intermediates Xj = (X 1
j , . . . ,X

N
j )

• technology: neoclassical or constant

Y n
j = F n

j (Lnj ,V
n
j ,X

n
j )

Nests neoclassical trade models:
• Armington

• Ricardian

• factor-endowment
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Locations J are arranged on an undirected graph

• J nodes in set J
• E ≡ set of edges (unordered pairs of J )

• N (j) ≡ set of neighbors of location j

• goods only shipped through

connected locations k ∈ N (j)

• not necessarily geographically

contiguous: airports, seaports

• can handle topography, too:

mountains, rivers, . . .
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Transport technology: Endogenous iceberg trade costs

Transporting one unit of good n from j to k requires

τnjk = τjk(Qn
jk , Ijk)

units of the good itself, where

• Qn
jk ≡ flow of good n along jk link regardless of where it was produced

• Ijk ≡ level of infrastructure on jk link

We assume that, along all links jk,

∂τjk(Q, I )

∂Q
≥ 0︸ ︷︷ ︸

congestion

and
∂τjk(Q, I )

∂I
≤ 0︸ ︷︷ ︸

paved, more lanes

,

and τjk(Q, I ) 6= τi`(Q, I ) because of topography (distance, ruggedness, . . . )
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Conservation of flows constraint and the shadow price of goods

For all locations j = 1, . . . , J and commodities n = 1, . . . ,N,

Dn
j +

∑
n′

X nn′

j +
∑

k∈N (j)

(1 + τnjk)Qn
jk︸ ︷︷ ︸

Consumption + Intermediate Use + Exports

≤ Y n
j +

∑
i∈N (j)

Qn
ij︸ ︷︷ ︸

Production + Imports

Let Pn
j denote the planner’s multiplier on this constraint

• Pn
j = society’s shadow value of marginal unit of good n in location j

• Pn
j = price of good n in location j in efficient CE
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Infrastructure technology

• Define transport network as {Ijk}j∈J ,k∈Nj

• Infrastructure built with one scarce resource: “asphalt”

• in fixed aggregate supply K

• freely shipped across locations

• only used for building infrastructure

• all together: opportunity cost of building Ijk is just not building Ii`

• δIjk ≡ asphalt intensity of building infrastructure on link jk

• network-building constraint: with multiplier PK (“price of asphalt”)∑
j∈J

∑
k∈N (j)

δIjk Ijk ≤ K

• problem allows for bounds on infrastructure:

0 ≤ I jk︸︷︷︸
existing road

≤ Ijk ≤ Ījk︸︷︷︸
feasible road

≤ ∞
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feasible road

≤ ∞

8 / 18



Let’s recap with a figure

• neoclassical HH, firms at each node in J

• trade only along connected edges in E
• trade costs τnjk decrease in level of

infrastructure Ijk (blue thickness) but

increase in volume of trade flows Qn
jk

• asphalt K is scarce but sunk
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Planner’s problem (with fixed labor)

W = max
cj ,hj ,{Ijk},

{Dn
j ,L

n
j ,V

n
j ,X

n
j ,{Q

n
jk}k}n

∑
j

ωjLjU(cj , hj)

subject to

1. availability of commodities: cjLj ≤ Dj(D
1
j , . . . ,D

n
j ) and hjLj ≤ Hj for all j

2. conservation of flows constraint: for all j , n

Dn
j +

∑
n′

X nn′

j +
∑

k∈N (j)

(1 + τnjk)Qn
jk ≤ Y n

j +
∑

i∈N (j)

Qn
ij

3. network-building constraint (subject to bounds on Ijk):∑
j∈J

∑
k∈N (j)

δIjk Ijk ≤ K

4. local factor market clearing (Lj and Vj)

5. non-negativitiy constraints on consumption, flows, and factor use
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Convexity of the planner’s problem

(i) Given the network {Ijk}, the joint optimal transport and allocation problem (with

fixed labor) is a convex optimization problem if

Qτjk(Q, I ) is convex in Q, ∀j ∈ J , k ∈ N (j);

(ii) the full planner’s problem including the network-design problem is a convex

optimization problem if, in addition,

Qτjk(Q, I ) is convex in Q and I , ∀j ∈ J , k ∈ N (j);

Intuition: two complementary forces. . .

• large flows =⇒ congestion

• large flows =⇒ incentive to increase capacity

Eventually, congestion must win out for the full problem to be convex
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Numerical implementation: Convexity pays off!

If the full planner’s problem is convex, then the KKT conditions are sufficient, and thus

the solution to the dual problem

inf
P≥0

sup
x
L(x,P),

coincides with the solution to the primal problem

sup
x

inf
P≥0
L(x,P).

(i) use FOCs to express control variables as function of prices, x(P)

(ii) reduce dual to convex minimization problem just in space of prices:

inf
P≥0
L(x(P),P)

(iii) solve with gradient-descent algorithm → guaranteed to converge to global optimum
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Optimal flows

Get a no-arbitrage condition from the planner’s first-order condition for flows:

Pn
k

Pn
j

≤ 1 + τnjk +
∂τnjk
∂Qn

jk

Qn
jk , = if Qn

jk > 0.

Any price differential that exceeds the marginal transport cost would be exploited.

• with no congestion (∂τnjk/∂Q
n
jk = 0), price differential bounded by trade cost

• if Qτjk(Q, I ) is convex in Q, can invert RHS to get Q̃n
jk(Pn

k /P
n
j ), which is increasing

• each good n flows in only one direction (to the higher price)
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Optimal network

With upper bound Ījk not binding, the planner’s first-order condition for infrastructure is:

PKδ
I
jk︸ ︷︷ ︸

Marginal building cost

≥
∑
n

Pn
j Q

n
jk

(
−
∂τnjk
∂Ijk

)
,︸ ︷︷ ︸

Marginal gains from infrastructure

= if Ijk > I jk .
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Workhorse parameterization: Log-linear transport costs

Suppose that

τjk(Q, I ) = δτjk
Qβ

I γ
, with β ≥ 0, γ ≥ 0

Main result: Qτjk(Q, I ) is convex in both arguments iff β ≥ γ

Also get intuitive, closed-form solutions:

• optimal flows:

Qn
jk =

[
1

1 + β

I γjk
δτjk

max

{
Pn
k

Pn
j

− 1, 0

}] 1
β

• optimal network:

Ijk = min{max{I ∗jk , I jk}, Ījk}, with I ∗jk =

[
γ

PK

δτjk
δIjk

(∑
n

Pn
j (Qn

jk)1+β

)] 1
1+γ
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[
γ

PK

δτjk
δIjk

(∑
n

Pn
j (Qn

jk)1+β

)] 1
1+γ

15 / 18



Workhorse parameterization: Log-linear transport costs

Suppose that

τjk(Q, I ) = δτjk
Qβ

I γ
, with β ≥ 0, γ ≥ 0

Main result: Qτjk(Q, I ) is convex in both arguments iff β ≥ γ

Also get intuitive, closed-form solutions:

• optimal flows:

Qn
jk =

[
1

1 + β

I γjk
δτjk

max

{
Pn
k

Pn
j

− 1, 0

}] 1
β

• optimal network:

Ijk = min{max{I ∗jk , I jk}, Ījk}, with I ∗jk =

[
γ

PK

δτjk
δIjk

(∑
n

Pn
j (Qn

jk)1+β

)] 1
1+γ

15 / 18



Taking the planner’s problem to the data Wait, does that make sense?

Parameterization

• preferences: cαj h
1−α
j , CES

• production: Y n
j = znj L

n
j

• transport: log-linear (previous slide)

• traded sectors: 11 (10 diff., 1 homog.)

Vars/params Calibration

J 0.5 arc-degree cells

E connect contiguous cells

I obsjk weighted sum of lanes

Lobsj NASA-SEDAC’s GPW v.4

GDPobs
j Yale’s G-Econ 4.0

znj model-implied

Hj model-implied

α = 0.4 exp. share of local cons.

β = 0.13 Couture et al. (2018)

γ = 0.10 Couture et al. (2018)

δτjk distancejk
δIjk distancejk , ruggednessjk
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Optimal road expansion and reallocation in Spain

Expand: 1.5K with I jk = I obsjk Reallocate: K with I jk = 0

Same exercise across 24 countries: avg. welfare gain of 1.8% for both
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Optimal road expansion across Western Europe vs. TEN-T proposal

Model (labor mobile within countries)

total welfare gains of 2.5%

Discretized TEN-T network
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Appendix



The decentralized equilibrium can be characterized, but not matched to data

Full planner’s problem can be decentralized with proper set of Pigouvian taxes:

• atomistic shippers pay tolls

• link-specific contractors build roads, earn toll revenue

• tolls set to perfectly offset congestion

But that set of Pigouvian taxes is not in the DGP!

• the DGP may be a competitive equilibrium, but it’s not this one

So why do it this way? Anything weaker and we lose global optimality back
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