Optimal transport networks in spatial equilibrium

Fajgelbaum & Schaal (Econometrica 2020)

Levi Crews February 2022

Motivation:

- in theory: transport infrastructure, through trade costs, shapes spatial distribution of prices, real incomes, and trade flows (Allen-Arkolakis 2014; Donaldson-Hornbeck 2016)
- in practice: billions spent on roads, airports, seaports, ...

Question: How should we allocate transport infrastructure across space?

- are observed networks suboptimal?
- if so, how large are the losses?

What we need: a method to identify the best set of infrastructure investments

Theory: optimal transport in GE

- arbitrary geography, productivity, pop.
- solve planner's global optimization problem over space of networks

Theory: optimal transport in GE

- arbitrary geography, productivity, pop.
- solve planner's global optimization problem over space of networks

Application: European road network

- welfare gain from optimal 50% expansion \approx 2.5%
- added links broadly similar to TEN-T proposal

$$\max_{\{\mathsf{Roads}_{jk}\}}\max_{\{\mathsf{Flows}_{jk}\}}\max_{\{\mathsf{Activity}_j\}}\sum_j\mathsf{Welfare}_j$$

- 1. local consumption feasibility
- 2. local factor market clearing
- 3. road construction feasibility
- 4. balanced flows
- 5. non-negativity

$$\max_{\{\mathsf{Roads}_{jk}\}} \max_{\{\mathsf{Flows}_{jk}\}} \max_{\{\mathsf{Activity}_j\}} \sum_j \mathsf{Welfare}_j$$

- 1. local consumption feasibility
- 2. local factor market clearing
- 3. road construction feasibility
- 4. balanced flows
- 5. non-negativity

- optimal allocation sub-problem: given roads and flows, solve neoclassical trade model
 - arbitrary geography, productivity, pop.
 - roads & flows pin down trade costs
 - has well-known solutions

$$\max_{\{\text{Roads}_{jk}\}} \max_{\{\text{Flows}_{jk}\}} \max_{\{\text{Activity}_j\}} \sum_{j} \text{Welfare}_j$$

- 1. local consumption feasibility
- 2. local factor market clearing
- 3. road construction feasibility
- 4. balanced flows
- 5. non-negativity

- optimal flow sub-problem: given roads, what are optimal trade flows?
 - shut off GE effects ⇒ well-known problem from optimal transport lit. (see Galichon 2016, Ch8)
 - well-known solution methods: duality techniques to derive *potential field*
 - here: same methods work in GE in field of prices

$$\max_{\{\mathsf{Roads}_{jk}\}} \max_{\{\mathsf{Flows}_{jk}\}} \max_{\{\mathsf{Activity}_j\}} \sum_j \mathsf{Welfare}_j$$

- 1. local consumption feasibility
- 2. local factor market clearing
- 3. road construction feasibility
- 4. balanced flows
- 5. non-negativity

- network design problem:
 - under assumptions: whole problem is convex, can use dual techniques in price space
 - otherwise: use dual techniques to solve sub-problems jointly, then *simulated annealing* to approximate global max

Model

Environment:

- discrete set of locations $\mathcal{J} = \{1, \dots, J\}$
- N traded goods, aggregated by $D_j(\cdot)$
- 1 non-traded good in fixed supply, H_j
- labor L_j (fixed or mobile)

Environment:

- discrete set of locations $\mathcal{J} = \{1, \dots, J\}$
- N traded goods, aggregated by $D_j(\cdot)$
- 1 non-traded good in fixed supply, H_j
- labor L_j (fixed or mobile)

Environment:

- discrete set of locations $\mathcal{J} = \{1, \dots, J\}$
- N traded goods, aggregated by $D_j(\cdot)$
- 1 non-traded good in fixed supply, H_j
- labor L_j (fixed or mobile)

Preferences: homothetic and concave

$$u_j = U(c_j, h_j)$$

with

$$c_j L_j = D_j (D_j^1, \ldots, D_j^N)$$

where D_j is h.o.d. 1 and concave

Environment:

- discrete set of locations $\mathcal{J} = \{1, \dots, J\}$
- N traded goods, aggregated by $D_j(\cdot)$
- 1 non-traded good in fixed supply, H_j
- labor L_j (fixed or mobile)

Preferences: homothetic and concave

$$u_j = U(c_j, h_j)$$

with

$$c_j L_j = D_j (D_j^1, \ldots, D_j^N)$$

where D_j is h.o.d. 1 and concave

Production:

- fixed factors $\mathbf{V}_j = (V_j^1, \dots, V_j^M)$
 - immobile across locations
 - mobile across sectors
- intermediates $\mathbf{X}_j = (X_j^1, \dots, X_j^N)$
- technology: neoclassical or constant

 $Y_j^n = F_j^n(L_j^n, \mathbf{V}_j^n, \mathbf{X}_j^n)$

Environment:

- discrete set of locations $\mathcal{J} = \{1, \dots, J\}$
- N traded goods, aggregated by $D_j(\cdot)$
- 1 non-traded good in fixed supply, H_j
- labor L_j (fixed or mobile)

Preferences: homothetic and concave

$$u_j = U(c_j, h_j)$$

with

$$c_j L_j = D_j (D_j^1, \ldots, D_j^N)$$

where D_j is h.o.d. 1 and concave

Production:

- fixed factors $\mathbf{V}_j = (V_j^1, \dots, V_j^M)$
 - immobile across locations
 - mobile across sectors
- intermediates $\mathbf{X}_j = (X_j^1, \dots, X_j^N)$
- technology: neoclassical or constant

 $Y_j^n = F_j^n(L_j^n, \mathbf{V}_j^n, \mathbf{X}_j^n)$

Nests neoclassical trade models:

- Armington
- Ricardian
- factor-endowment

Locations ${\cal J}$ are arranged on an undirected graph

- J nodes in set ${\mathcal J}$
- $\mathcal{E} \equiv$ set of edges (unordered pairs of \mathcal{J})
- $\mathcal{N}(j) \equiv$ set of neighbors of location j
- goods only shipped through connected locations $k \in \mathcal{N}(j)$
- not necessarily geographically contiguous: airports, seaports

Locations \mathcal{J} are arranged on an undirected graph

- J nodes in set ${\mathcal J}$
- $\mathcal{E} \equiv$ set of edges (unordered pairs of \mathcal{J})
- $\mathcal{N}(j) \equiv$ set of neighbors of location j
- goods only shipped through connected locations $k \in \mathcal{N}(j)$
- not necessarily geographically contiguous: airports, seaports
- can handle topography, too: mountains, rivers, ...

Transport technology: Endogenous iceberg trade costs

Transporting one unit of good n from j to k requires

$$\tau_{jk}^n = \tau_{jk}(Q_{jk}^n, I_{jk})$$

units of the good itself, where

- $Q_{ik}^n \equiv$ flow of good *n* along *jk* link regardless of where it was produced
- $I_{jk} \equiv$ level of infrastructure on jk link

We assume that, along all links jk,

and $\tau_{jk}(Q, I) \neq \tau_{i\ell}(Q, I)$ because of topography (distance, ruggedness, ...)

For all locations $j = 1, \ldots, J$ and commodities $n = 1, \ldots, N$,

For all locations $j = 1, \ldots, J$ and commodities $n = 1, \ldots, N$,

Let P_i^n denote the **planner's multiplier** on this constraint

- P_j^n = society's shadow value of marginal unit of good *n* in location *j*
- P_i^n = price of good *n* in location *j* in efficient CE

For all locations $j = 1, \ldots, J$ and commodities $n = 1, \ldots, N$,

Let P_i^n denote the **planner's multiplier** on this constraint

- P_j^n = society's shadow value of marginal unit of good *n* in location *j*
- $P_i^n =$ price of good *n* in location *j* in efficient CE

Infrastructure technology

- Define transport network as $\{I_{jk}\}_{j \in \mathcal{J}, k \in \mathcal{N}_j}$
- Infrastructure built with one scarce resource: "asphalt"
 - in fixed aggregate supply K
 - freely shipped across locations
 - only used for building infrastructure
 - all together: opportunity cost of building I_{jk} is just not building $I_{i\ell}$

Infrastructure technology

- Define transport network as $\{I_{jk}\}_{j \in \mathcal{J}, k \in \mathcal{N}_j}$
- Infrastructure built with one scarce resource: "asphalt"
 - in fixed aggregate supply K
 - freely shipped across locations
 - only used for building infrastructure
 - all together: opportunity cost of building I_{jk} is just not building $I_{i\ell}$
- $\delta_{ik}^{l} \equiv$ asphalt intensity of building infrastructure on link jk
- **network-building constraint**: with multiplier P_K ("price of asphalt")

$$\sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{N}(j)} \delta_{jk}^{\prime} I_{jk} \leq K$$

Infrastructure technology

- Define transport network as $\{I_{jk}\}_{j \in \mathcal{J}, k \in \mathcal{N}_j}$
- Infrastructure built with one scarce resource: "asphalt"
 - in fixed aggregate supply K
 - freely shipped across locations
 - only used for building infrastructure
 - all together: opportunity cost of building I_{jk} is just not building $I_{i\ell}$
- $\delta'_{ik} \equiv$ asphalt intensity of building infrastructure on link *jk*
- network-building constraint: with multiplier P_K ("price of asphalt")

$$\sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{N}(j)}\delta'_{jk}I_{jk}\leq K$$

• problem allows for bounds on infrastructure:

$$0 \leq \underbrace{\underline{I}_{jk}}_{\text{existing road}} \leq I_{jk} \leq \underbrace{\overline{I}_{jk}}_{\text{feasible road}} \leq \infty$$

 $\bullet\,$ neoclassical HH, firms at each node in ${\cal J}$

- $\bullet\,$ neoclassical HH, firms at each node in ${\cal J}$
- \bullet trade only along connected edges in $\mathcal E$

- $\bullet\,$ neoclassical HH, firms at each node in ${\cal J}$
- \bullet trade only along connected edges in ${\cal E}$
- trade costs τⁿ_{jk} decrease in level of infrastructure I_{jk} (blue thickness) but increase in volume of trade flows Qⁿ_{jk}

- $\bullet\,$ neoclassical HH, firms at each node in ${\cal J}$
- \bullet trade only along connected edges in ${\cal E}$
- trade costs τⁿ_{jk} decrease in level of infrastructure I_{jk} (blue thickness) but increase in volume of trade flows Qⁿ_{ik}
- asphalt K is scarce but sunk

Planner's problem (with fixed labor)

$$W = \max_{\substack{c_j, h_j, \{I_{jk}\}, \\ \{D_j^n, L_j^n, \mathbf{V}_j^n, \mathbf{X}_j^n, \{Q_{jk}^n\}_k\}_n}} \sum_j \omega_j L_j U(c_j, h_j)$$

subject to

- 1. availability of commodities: $c_j L_j \leq D_j (D_j^1, \ldots, D_j^n)$ and $h_j L_j \leq H_j$ for all j
- 2. conservation of flows constraint: for all j, n

$$D_j^n + \sum_{n'} X_j^{nn'} + \sum_{k \in \mathcal{N}(j)} (1 + au_{jk}^n) Q_{jk}^n \leq Y_j^n + \sum_{i \in \mathcal{N}(j)} Q_{ij}^n$$

3. **network-building** constraint (subject to bounds on I_{jk}):

$$\sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{N}(j)}\delta'_{jk}I_{jk}\leq K$$

- 4. local factor market clearing $(L_j \text{ and } \mathbf{V}_j)$
- 5. non-negativitiy constraints on consumption, flows, and factor use

Planner's problem (with fixed labor)

$$W = \max_{\{I_{jk}\}} \max_{\{Q_{jk}^n\}} \max_{\{D_j^n, L_j^n, \mathbf{V}_j^n, \mathbf{X}_j^n\}_n} \sum_j \omega_j L_j U(c_j, h_j)$$

subject to

- 1. availability of commodities: $c_j L_j \leq D_j (D_j^1, \dots, D_j^n)$ and $h_j L_j \leq H_j$ for all j
- 2. conservation of flows constraint: for all j, n

$$D_j^n + \sum_{n'} X_j^{nn'} + \sum_{k \in \mathcal{N}(j)} (1 + au_{jk}^n) Q_{jk}^n \leq Y_j^n + \sum_{i \in \mathcal{N}(j)} Q_{ij}^n$$

3. **network-building** constraint (subject to bounds on I_{jk}):

$$\sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{N}(j)}\delta_{jk}^{\prime}I_{jk}\leq K$$

- 4. local factor market clearing $(L_j \text{ and } \mathbf{V}_j)$
- 5. non-negativitiy constraints on consumption, flows, and factor use

Convexity of the planner's problem

(i) Given the network $\{I_{jk}\}$, the joint optimal transport and allocation problem (with fixed labor) is a **convex optimization problem** if

```
Q\tau_{jk}(Q, I) is convex in Q, \forall j \in \mathcal{J}, k \in \mathcal{N}(j);
```

(ii) the full planner's problem including the network-design problem is a convex optimization problem if, in addition,

 $Q\tau_{jk}(Q, I)$ is convex in Q and I, $\forall j \in \mathcal{J}, k \in \mathcal{N}(j)$;

Intuition: two complementary forces...

- large flows \implies congestion
- large flows \implies incentive to increase capacity

Eventually, congestion must win out for the full problem to be convex

If the full planner's problem is convex, then the KKT conditions are **sufficient**, and thus the solution to the **dual problem**

 $\inf_{\mathbf{P}\geq 0}\sup_{\mathbf{x}}\mathcal{L}(\mathbf{x},\mathbf{P}),$

coincides with the solution to the primal problem

 $\sup_{\mathbf{x}} \inf_{\mathbf{P} \geq 0} \mathcal{L}(\mathbf{x}, \mathbf{P}).$

(i) use FOCs to express control variables as function of prices, $\mathbf{x}(\mathbf{P})$

(ii) reduce dual to convex minimization problem just in space of prices:

 $\inf_{\mathbf{P} \geq 0} \mathcal{L}(\mathbf{x}(\mathbf{P}), \mathbf{P})$

(iii) solve with gradient-descent algorithm ightarrow guaranteed to converge to global optimum

Get a no-arbitrage condition from the planner's first-order condition for flows:

$$rac{P_k^n}{P_j^n} \leq 1 + au_{jk}^n + rac{\partial au_{jk}^n}{\partial Q_{jk}^n} Q_{jk}^n, \quad = \ ext{if} \ Q_{jk}^n > 0.$$

Any price differential that exceeds the marginal transport cost would be exploited.

- with no congestion $(\partial \tau^n_{ik}/\partial Q^n_{ik}=0)$, price differential bounded by trade cost
- if $Q\tau_{jk}(Q, I)$ is convex in Q, can invert **RHS** to get $\tilde{Q}_{jk}^n(P_k^n/P_j^n)$, which is increasing
- each good *n* flows in only **one direction** (to the higher price)

Workhorse parameterization: Log-linear transport costs

Suppose that

$$au_{jk}(\boldsymbol{Q},\boldsymbol{I}) = \delta_{jk}^{ au} rac{\boldsymbol{Q}^{eta}}{\boldsymbol{I}^{\gamma}}, \quad ext{with } eta \geq \mathbf{0}, \gamma \geq \mathbf{0}$$

Main result: $Q\tau_{jk}(Q, I)$ is convex in both arguments iff $\beta \geq \gamma$

Workhorse parameterization: Log-linear transport costs

Suppose that

$$au_{jk}(\boldsymbol{Q},\boldsymbol{I}) = \delta_{jk}^{ au} rac{\boldsymbol{Q}^{eta}}{\boldsymbol{I}^{\gamma}}, \hspace{1em} ext{with} \hspace{1em} eta \geq \boldsymbol{0}, \gamma \geq \boldsymbol{0}$$

Main result: $Q\tau_{jk}(Q, I)$ is convex in both arguments iff $\beta \geq \gamma$

Also get intuitive, closed-form solutions:

• optimal flows:

$$Q_{jk}^n = \left[rac{1}{1+eta}rac{I_{jk}^\gamma}{\delta_{jk}^ au}\max\left\{rac{P_k^n}{P_j^n}-1,0
ight\}
ight]^rac{1}{eta}$$

Workhorse parameterization: Log-linear transport costs

Suppose that

$$au_{jk}(Q,I) = \delta_{jk}^{ au} rac{Q^{eta}}{I^{\gamma}}, \quad ext{with } eta \geq 0, \gamma \geq 0$$

Main result: $Q\tau_{jk}(Q, I)$ is convex in both arguments iff $\beta \geq \gamma$

Also get intuitive, closed-form solutions:

• optimal flows:

$$Q_{jk}^n = \left[rac{1}{1+eta}rac{I_{jk}^\gamma}{\delta_{jk}^ au}\max\left\{rac{P_k^n}{P_j^n}-1,0
ight\}
ight]^rac{1}{eta}$$

• optimal network:

$$I_{jk} = \min\{\max\{I_{jk}^*, \underline{I}_{jk}\}, \overline{I}_{jk}\}, \text{ with } I_{jk}^* = \left[\frac{\gamma}{P_{\kappa}} \frac{\delta_{jk}^{\tau}}{\delta_{jk}^I} \left(\sum_n P_j^n (Q_{jk}^n)^{1+\beta}\right)\right]^{\frac{1}{1+\gamma}}$$

Parameterization

- preferences: $c_j^{\alpha} h_j^{1-\alpha}$, CES
- production: $Y_j^n = z_j^n L_j^n$
- transport: log-linear (previous slide)
- traded sectors: 11 (10 diff., 1 homog.)

Vars/params	Calibration
\mathcal{J}	0.5 arc-degree cells
ε	connect contiguous cells
I_{ik}^{obs}	weighted sum of lanes
\tilde{L}_{i}^{obs}	NASA-SEDAC's GPW v.4
GDP_i^{obs}	Yale's G-Econ 4.0
z_j^n	model-implied
\tilde{H}_{j}	model-implied
$\alpha = 0.4$	exp. share of local cons.
eta= 0.13	Couture et al. (2018)
$\gamma=$ 0.10	Couture et al. (2018)
δ^{τ}_{ik}	distance _{jk}
δ^{I}_{jk}	distance _{jk} , ruggedness _{jk}

Optimal road expansion and reallocation in Spain

Same exercise across 24 countries: avg. welfare gain of 1.8% for both

Optimal road expansion across Western Europe vs. TEN-T proposal

Model (labor mobile within countries)

total welfare gains of 2.5%

Discretized TEN-T network

Appendix

Full planner's problem can be decentralized with proper set of Pigouvian taxes:

- atomistic shippers pay tolls
- link-specific contractors build roads, earn toll revenue
- tolls set to perfectly offset congestion

But that set of Pigouvian taxes is not in the DGP!

• the DGP may be a competitive equilibrium, but it's not this one

So why do it this way? Anything weaker and we lose global optimality