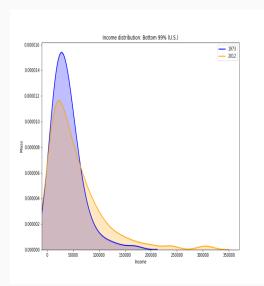
The dynamics of inequality

Gabaix, Lasry, Lions, & Moll (Econometrica 2016)

Levi Crews

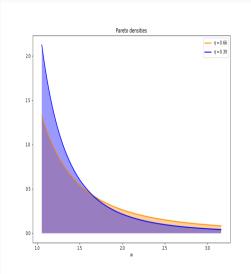
November 2019

The rapid rise in top income inequality



- U.S. pre-tax national income (source: World Inequality Database)
- 1973 (blue) vs. 2012 (orange)
- takeaway: mass has shifted to right tail
- hard to see: right tail (top decile) is roughly Pareto

Background: What is a Pareto tail?



• Pareto tail above pth percentile:

$$\mathbb{P}\{w_{it} > w\} = Cw^{-1/\eta}$$

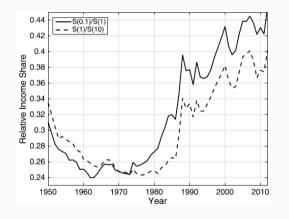
- ullet higher $\eta \implies$ fatter tail
- equivalent characterization:

$$S\left(\frac{p}{100}\right) = 10^{\eta-1} \cdot S\left(\frac{p}{10}\right) = 10^{2(\eta-1)} \cdot S(p)$$

where

• S(p) = income share of pth percentile

The rapid rise in top income inequality



- relative income shares of top decile (1950–2012 U.S.)
- claim: the top decile of the U.S. income distribution is (roughly)
 Pareto
- exact Pareto: these lines would overlap
- rise in $\eta \implies$ rise in "top inequality"

What explains the rapid rise in top income inequality (η) ?

- Try tool off-shelf: standard random growth model
 - known to generate Pareto tail
- main result: converges too slowly!
 - ullet ergodic theory & PDEs \Longrightarrow analytic formula for speed of convergence
 - Laplace transform ⇒ tail converges even slower than average
- extension: add superstars and convex skill prices
 - can converge arbitrarily quickly (or slowly)

What explains the rapid rise in top income inequality (η) ?

- Try tool off-shelf: standard random growth model
 - known to generate Pareto tail
- main result: converges too slowly!
 - ullet ergodic theory & PDEs \Longrightarrow analytic formula for speed of convergence
 - ullet Laplace transform \Longrightarrow tail converges *even slower* than average
- extension: add superstars and convex skill prices
 - can converge arbitrarily quickly (or slowly)

Standard random growth model: Components

- continuum of workers i
- $\log \text{ wage } x_{it} = \log w_{it}$
- random growth:

$$dx_{it} = \mu dt + \sigma dZ_{it}$$

- stabilizing forces:
 - death rate δ (newborn $\sim \psi(x)$)
 - reflecting barrier $\underline{x} = 0$
- can allow arbitrary $\mu(x,t)$, $\sigma(x,t)$, jumps, reinjections

Standard random growth model: Stationary distribution

- continuum of workers i
- $\log \text{ wage } x_{it} = \log w_{it}$
- random growth:

$$dx_{it} = \mu dt + \sigma dZ_{it}$$

- stabilizing forces:
 - death rate δ (newborn $\sim \psi(x)$)
 - reflecting barrier $\underline{x} = 0$
- can allow arbitrary $\mu(x,t)$, $\sigma(x,t)$, jumps, reinjections

• stationary tail: Gabaix (2009)

$$\mathbb{P}(w_{it} > w) \sim Cw^{-1/\eta}$$

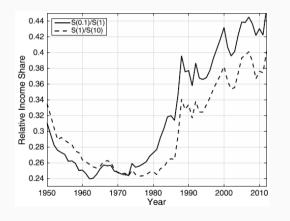
• top inequality:

$$\eta = \frac{\sigma^2}{-\mu + \sqrt{\mu^2 + 2\sigma^2 \delta}}$$

 If dist. of w has Pareto tail above pth percentile:

$$\frac{S(p/10)}{S(p)}=10^{\eta-1}$$

Standard random growth model: Stationary distribution



• stationary tail: Gabaix (2009)

$$\mathbb{P}(w_{it} > w) \sim Cw^{-1/\eta}$$

• top inequality:

$$\eta = \frac{\sigma^2}{-\mu + \sqrt{\mu^2 + 2\sigma^2 \delta}}$$

 If dist. of w has Pareto tail above pth percentile:

$$\frac{S(p/10)}{S(p)}=10^{\eta-1}$$

Thought experiment

- into time t=0: economy in steady state with dist. p_0 and params. μ_0 , σ_0^2 , etc.
- at time t = 0: increase $\sigma_{\infty}^2 > \sigma_0^2$
- as time $t \to \infty$: converge to new stationary distribution p_{∞}
- question: how quickly $p_0 \to p_{\infty}$?
- measure of distance: the L^1 -norm

$$\|p(t) - p_{\infty}\| := \int_{-\infty}^{\infty} |p(x, t) - p_{\infty}(x)| dx$$

	1973	2012	Source
η	0.39	0.66	$1 + \log_{10} S(0.1) / S(1)$
σ	0.1	0.158	HPV (2010)
μ	0002	0.002	match η
δ	1/30	1/30	match retirement

Kolmogorov forward equation

Kolmogorov forward equation:

$$\underbrace{p_t}_{\text{evolution of }p} = -\underbrace{\mu \cdot p_{\text{x}}}_{\text{outflow from drift}} + \underbrace{\frac{\sigma^2}{2} \cdot p_{\text{xx}}}_{\text{lto term}} - \underbrace{\delta p}_{\text{outflow from death}} + \underbrace{\delta \psi}_{\text{inflow from birth}}$$

with initial condition $p(x,0) = p_0(x)$ and boundary condition

$$0 = -\mu \cdot p(0,t) + \frac{\sigma^2}{2} \cdot p_{\mathsf{x}}(0,t), \quad \forall t$$

• Rewrite using **differential operator**:

$$p_t = \mathcal{A}^* p + \delta \psi, \qquad \mathcal{A}^* \coloneqq \mu \cdot p_{\mathsf{x}} + \frac{\sigma^2}{2} \cdot p_{\mathsf{x}\mathsf{x}} - \delta p$$

ullet \mathcal{A}^* is linear \Longrightarrow "transition matrix" for continuous-state process

Main result: Average speed of convergence

The cross-sectional dist. p(x,t) converges to its stationary dist. $p_{\infty}(x)$ in the L^1 -norm for any initial dist. $p_0(x)$. The rate of convergence

$$\lambda := -\lim_{t \to \infty} \frac{1}{t} \log \|p(x, t) - p_{\infty}(x)\|$$

without a reflecting barrier is

$$\lambda = \delta$$

and with a reflecting barrier ($\underline{x} = 0$) is

$$\lambda = \frac{\mu^2}{2\sigma^2} \cdot \mathbf{1}_{\{\mu < 0\}} + \delta.$$

• **special case:** reflecting barrier, $\mu < 0$, $\delta = 0$

• top inequality:

$$\eta = -\sigma^2/(2\mu)$$

• speed of convergence:

$$\lambda = \frac{\sigma^2}{8\eta^2}$$

- High inequality goes hand in hand with slow transitions!
- calibrated half-life of L¹-distance:

$$t_{1/2} = rac{\log 2}{\lambda} pprox 96$$
 years

Intuition: Convergence of finite-state Markov chains

- recall: A^* is a linear operator \implies like an infinite-dimensional matrix
- chop up the state space: $x_{it} \in \{x_1, \dots, x_n\}$
- now use $n \times n$ transition matrix **A**: KFE is approximately

$$\rho_t = \mathbf{A}' p + \delta \psi, \qquad \rho(0) = \mathbf{p_0}$$

• assume **A** is **symmetric & diagonalizable** \Longrightarrow

$$p(t) = \sum_{j=1}^n c_j e^{\Lambda_j t} v_j, \qquad p_0 = \sum_{j=1}^n c_j v_j \quad ext{ with } egin{array}{ll} ext{eigenvalues } \Lambda_j \in \mathbb{R} \ ext{eigenvectors } v_j \end{array}$$

- stationary distribution: $\Lambda_1 = 0$, $\rho_{\infty} = c_1 v_1$
- **speed:** with eigenvalues ordered $|\Lambda_j| < |\Lambda_k|$ if j < k and $p_0 \not\perp v_2$,

for large
$$t$$
: $p(t) \approx p_{\infty} + c_2 e^{\Lambda_2 t} v_2 \implies \lambda = -\Lambda_2$

Tail convergence: Even slower than average

- Maybe tail converges faster than average?
- Laplace transform: without reflecting barrier

$$\begin{split} \hat{p}(\xi,t) &\coloneqq \int_{-\infty}^{\infty} e^{-\xi x} p(x,t) \, dx \\ &= \mathbb{E} \left[w_{it}^{-\xi} \right] \\ &= -\xi \text{th moment of income} \\ &\text{distribution } (\xi < 0) \end{split}$$

• more negative $\xi \implies$ more weight on p's tail

 The rate of convergence of the -ξth moment of the distribution of income is

$$\lambda(\xi) \coloneqq \xi \mu - \xi^2 \frac{\sigma^2}{2} + \delta$$

$$< \delta$$

$$= \text{ avg. rate of convergence}$$

Tail converges even slower than average!

What explained the rapid rise in top income inequality (η) ?

- Tried tool off-shelf: standard random growth model
 - known to generate Pareto tail
- main result: converged too slowly!
 - ullet ergodic theory & PDEs \Longrightarrow analytic formula for speed of convergence
 - Laplace transform ⇒ tail converges even slower than average
- extension: superstars and changing skill prices
 - can converge arbitrarily quickly (or slowly)